• Title/Summary/Keyword: Concrete mat

Search Result 98, Processing Time 0.023 seconds

A Fundamental Test of Temperature Crack Reduction Method Application by Setting Time Control of Large-Scaled Mat Foundation Mass Concrete (초대형 매트기초 매스 콘크리트의 응결시간조정에 의한 온도균열저감 공법적용의 기초적 실험)

  • Han, Cheon-Goo;Lee, Jae-Sam;Noh, Sang-Kyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.3
    • /
    • pp.95-101
    • /
    • 2009
  • Constructing large-scale mat foundation mass concrete is increasing for the stability of building structure, because a lot of high rise building are being built in order to make full use of limited space. However, It is of increasing concerns that because limited placing equipments, available job-site and systems for mass concete placement in construction field do not allow to place great quantity of concrete at the same time in large scale mat foundation, consistency between placement lift can not be secured. And also, it is likely to crack due to stress caused by the difference of hydration heat generation time. To find out the solution against above problems, this study is to reconfirm the performance of normal concrete designed by mix proportion and super retarding concrete. The Fundamental test shows what happens if low heat proportioning and control method of setting time are applied at the job-site of newly constructed high rise building. The test result show that slump flow of concrete has been somewhat increased as the target retarding time gets longer, while the air content has been slightly decreased but this is no great difference from normal concrete. The setting time shows to be retarded as target retarding time gets longer, the range of retarding time increases. It is necessary to increase the amount of mix of super retarding agent in the proportion ration by setting curing temperature high since outdoor curing is about 6 hours faster than standard curing, which means the temperature of the concrete will be higher than the temperature of the surrounding environment, due to its high hydration heat when applying in a construction site. The compressive strength of super retarding concrete appears to be lower than normal concrete due to the retarding action in the early stage. However, as the time goes by, the compressive strength gets higher, and by the 28th day the strength becomes the same or higher than normal concrete.

An Analytic Study on Early aged Freezing Damage Prevention and Thermal Crack Control of Concrete in Cold-Weathering Mat Foundation Construction (동절기 매트기초공사시 콘크리트의 초기동해방지 및 온도충격제어에 관한 해석적 연구)

  • 이도범;김효락;박지훈;최일호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.807-812
    • /
    • 2001
  • This study is peformed for checking the limitation and application of each curing/heating methods on cold-weathering mat foundation construction, considering temperature control, early strength security and temperature declination range limit, by means of concrete material properties and thermal analysis technique that were published previously. In the result of this analysis, we checked the open air temperature and mat depth that are possible to apply each curing/heating methods on cold-weathering construction and found curing/heating time of each methods that is able to prevent early aged freezing damage and thermal crack

  • PDF

Pilot Test of Improving Super Retarding Concrete to Control of Hydration Heat Crack of Foundation Mat Mass Concrete (기초매트 매스 콘크리트의 수화열 균열제어로서 초지연 콘크리트 활용에 관한 예비실험)

  • Noh, Sang-Kyun;Baek, Dae-Hyun;Lee, Jae-Sam;Kim, Hyun-Seob;Lee, Byeong-Hoon;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.37-41
    • /
    • 2008
  • According to the recent rapidly increasing that construction works are gradually Manhattanized mainly the grand scaled residential buildings, the foundation of the building that is related to safety is increasing for building as a grand scaled mat concrete. Because mat concrete can not be simultaneously placing of concrete in a great quantity due to the circumstance at the field, the inequal deformation of the tensile stress that according to the time lag of hydration heat between the upper layer and the lower layer is affecting as a cause that is the possibility of crack occurrence by increasing. Accordingly, this research checked the efficiency of super retard concrete in applying real structures, and we implemented the preparatory experiment to settle up the inequal deformation of the tensile stress substantially that is according to the time lag of placement between the upper layer and the lower layer by controlling the setting time using the super retarding agent. As the result of test, the more target of delay time lengthened, the more fluidity increased and air content indicated a little differences. There was from 2 to 10 hours between the standard curing and the outside curing at the setting time and in case of calculating the rate of mixing at real structure is required that mix promotion, increasing the amount of mixing, by setting up the curing temperature. The super retard concrete showed the result that in compressive strength, early-age strength was smaller than normal concrete whereas it was same or more figures from at the aging 28days because of the super retarding agent.

  • PDF

When mend piercing crack of large size mat basis, study of perforation and vottom repair that use water jet (대형매트기초의 관통균열 보수시 WATER JET을 이용한 천공과 저면보수에 관한 연구)

  • 박성우;한송수;이상헌;박찬규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.577-580
    • /
    • 2003
  • Problem of repairing by boring is that it deteriorates stabelety and durability of structure by permeation of seawater from underneath after damage and repair of reinforcing rod regarding of spot. The purpose of this study is to improve the porblem by using the repair method of general boring to mend the of large mat basis. Direction of thes experiment is to apply the new repair material and the method to control the blazing fire factor caused by the crack from the foundation of large mat and also to estimate it's integrity. New method of construction is method of contruction that do speace scurity in vertical drilling and bottom useing water jet. New material used bantonite and rubberized asphalt. Test result existent repair method of construction large size mat basis perforation is difficult and reinforcing rod can be damaged coule there were a lot of problems with re-water leakage of crack repair region, but overcomes existent short coming by method that apply in this study.

  • PDF

Thermal Crack Control Using Optimized Steps of Concrete Placement in Massive Concrete Foundation (대형 기초 콘크리트의 분할타설 방법을 고려한 수화열에 의한 온도균열 제어 대책)

  • 김동규;조선규;김은겸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1169-1174
    • /
    • 2000
  • Since the cement-water reaction in exothermic by nature, the temperature rise within a large concrete mass. Significant tensile stresses may develop from the volume change associated with the increase and decrease of the temperature with the mass concrete. There thermal stresses will cause temperature-related cracking in mass concrete structure. These typical type of mass concrete include mat foundation, bridge piers, thick wall, box type walls, tunnel linings, etc. Crack control methods can be considered at such stages as designing, selecting the materials, and detailing the construction method. Temperature and analysis was performed by taking into consideration of the cement type and content, boundary and environment conditions including the variations of atmospheric temperature and wind velocity. This is paper, the effect of separate placement of thermal crack control footing was analysed by a three dimensional finite element method. As a result, using this method, thermal crack control can be easily performed for structures such as mat structures.

  • PDF

Characteristics of Temperature History at Each Section of Mat Foundation Concrete Applying Double Bubble Sheets (이중버블시트를 적용한 매트 기초콘크리트의 부위별 온도이력 특성)

  • Kim, Tae-Cheong;Kim, Jong;Jeon, Chung-Keun;Shin, Dong-An;Oh, Seon-Kyo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.13-14
    • /
    • 2016
  • This study is aimed to analyze temperature history at each section of mat foundation concrete applying double bubble sheets. The results of the study are as follows. Firstly, the results of measuring the temperature history indicate that the lowest external temperature has been recorded at -5.6℃ for the three-day measurement period. For the central section, the result indicates that the lower, center and upper part have all secured the concrete curing temperature of 18℃ or higher. This results are believed to have resulted from excellent heat insulation performance of double bubble sheets. For the edge section between the edge form and the concrete interface, the temperature has been measured, on average, approximately 12℃ lower than the central section. However, all measured sections have indicated the temperature of 5℃ or higher. Meanwhile, an analysis has been conducted through the estimation equation of compressive strength of maturity during the curing period in order to examine the possibility of early frost damage and the aspect of securing strength. It has been confirmed that the compressive strength is higher than 50°D·D, namely, 5MPa, on the 3rd day of the aging process, which allows early frost damage to be avoided.

  • PDF

Comparative Analysis of Temperature and Setting Time of Concrete According to Types of Cements (시멘트 종류 변화에 따른 콘크리트의 온도 및 응결시간 비교분석)

  • Choi, Yoon-Ho;Kim, Sang-Min;Hyun, Seung-Yong;Kim, Jong;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.29-30
    • /
    • 2020
  • In this study, as part of the foundation for advancing the material compounding aspect to reduce hydration heat cracks in the mat foundation on which the mass concrete is constructed, the degree of concrete varieties of cement is used. The setting time was measured and comparative analysis was performed. Results It was confirmed that the concrete using LHC was more effective than the concrete using OPC in reducing the use of SP, the calorific value of the concrete was low, and it was more effective in preventing cracks. It is also terminated after 10 hours and it is determined that the use of LHC can reduce the cracks caused by the heat of hydration of the mat foundation.

  • PDF

Thermal Crack Control of Massive Foundation Mat of Office-tel Using Thermal Analysis (오피스텔 대형 기초매트의 온도해석을 통한 온도균열제어)

  • 김태홍;하재담;김동석;이종열
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1181-1186
    • /
    • 2000
  • The crack of concrete induced by the heat of hydration is a serious problem, particularly in concrete structures such as biers, thick walls, box type walls, mat-slab of nuclear reactor buildings, dams or foundations of high rise buildings, etc.. As a result of the temperature rise and restriction condition of foundation, the thermal stress which may induce the cracks can occur. Therefore the various techniques of the thermal stress control in massive concrete have been widely used. One of them is prediction of the thermal stress, besides low-heat cement which mitigates the temperature rise, design change which considers steel bar reinforcement, operation control and so on. In this study, firstly it introduce the thermal cracks control technique by employing low-heat cement concrete, thermal stress analysis considering season. Secondly it shows the application of the cracks control technique like block placement.

Construction Management Method for Asphalt Paving Using Ground Penetrating Radar and an Infrared Camera (지표투과레이더와 적외선카메라를 이용한 아스팔트 포장 시공 관리 방법)

  • Baek, Jongeun;Park, Hee Mun;Yoo, Pyung Jun;Im, Jae Kyu
    • International Journal of Highway Engineering
    • /
    • v.17 no.6
    • /
    • pp.1-9
    • /
    • 2015
  • PURPOSES : The objective of this study is to propose a quality control and quality assurance method for use during asphalt pavement construction using non-destructive methods, such as ground penetrating radar (GPR) and an infrared (IR) camera. METHODS : A 1.0 GHz air-coupled GPR system was used to measure the thickness and in situ density of asphalt concrete overlay during the placement and compaction of the asphalt layer in two test construction sections. The in situ density of the asphalt layer was estimated based on the dielectric constant of the asphalt concrete, which was measured as the ratio of the amplitude of the surface reflection of the asphalt mat to that of a metal plate. In addition, an IR camera was used to monitor the surface temperature of the asphalt mat to ensure its uniformity, for both conventional asphalt concrete and fiber-reinforced asphalt (FRA) concrete. RESULTS : From the GPR test, the measured in situ air void of the asphalt concrete overlay gradually decreased from 12.6% at placement to 8.1% after five roller passes for conventional asphalt concrete, and from 10.7% to 5.9% for the FRA concrete. The thickness of the asphalt concrete overlay was reduced from 7.0 cm to 6.0 cm for the conventional material, and from 9.2 cm to 6.4 cm for the FRA concrete. From the IR camera measurements, the temperature differences in the asphalt mat ranged from $10^{\circ}C$ to $30^{\circ}C$ in the two test sections. CONCLUSIONS : During asphalt concrete construction, GPR and IR tests can be applicable for monitoring the changes in in situ density, thickness, and temperature differences of the overlay, which are the most important factors for quality control. For easier and more reliable quality control of asphalt overlay construction, it is better to use the thickness measurement from the GPR.