• Title/Summary/Keyword: Concrete grinding

Search Result 70, Processing Time 0.027 seconds

Experimental Study on Development of Compressive Strength in Using by Micro-grinding Fly-ash (미분쇄 플라이애쉬를 사용한 모르타르의 압축강도 발현성상에 대한 실험적 연구)

  • 김종협;최광윤;최영화;정재동
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.99-102
    • /
    • 1999
  • In the study, the effect of the replacement content(20, 40, 60, 80%) and particle fineness and the chemical activator of the fly-ash on the flow and strength development of mortar was investigated. We found that the higher raito of the fly-ash replacement produced the lower the mortar strength and the higher fineness of the fly-ash yielded the higher strength. Also, we used Na2SO4 as activator of fly-ash to rise compressive strength mortar. The result as follows: the fly-ash mortar which stimulated by chemical activator, was higher strength development at early than the fly-ash mortar without chemical activator. But in the late age, the result indicated adversely.

  • PDF

Property of Strength Development on the Concrete with Coarse Particle Cement (굵은 입자 시멘트를 사용한 콘크리트의 강도발현 특성)

  • Noh, Sang-Kyun;Son, Ho-Jung;Baek, Dae-Hyun;Chung, Woung-Sun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.89-91
    • /
    • 2011
  • This paper is to investigate experimentally the property of strength development on the concrete for 5 years according to the change of a replacement rate of coarse particle cement in order to use coarse particle cement with a fineness of 1 900 ㎠/g that is classified during a grinding process of the OPC production. The result is that as the CC replacement rate increased, the compressive strength was decreased proportionally. but the width of strength reduction was reduced as time passed.

  • PDF

Separation of Radionuclide from Dismantled Concrete Waste (해체 콘크리트 폐기물로부터 방사성핵종 분리)

  • Min, Byung-Youn;Park, Jung-Woo;Choi, Wang-Kyu;Lee, Kune-Woo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.2
    • /
    • pp.79-86
    • /
    • 2009
  • Concrete materials in nuclear facilities may become contaminated or activated by various radionuclides through different mechanism. Decommissioning and dismantling of these facilities produce considerable quantities such as concrete structure, rubble. In this paper, the characteristics distribution of the radionuclide have been investigated for the effects of the heating and grinding test for aggregate size such as gravel, sand and paste from decommissioning of the TRIGA MARK II research reactor and uranium conversion plant. The experimental results showed that most of the radionuclide could be removed from the gravel, sand aggregate and concentrated into a paste. Especially, we found that the heating temperature played an important role in separating the radionuclide from the concrete waste. Contamination of concrete is mainly concentrated in the porous paste and not in the dense aggregate such as the gravel and sand. The volume reduction rate could be achieved about 80% of activated concrete waste and about 75% of dismantled concrete waste generated from UCP.

  • PDF

An Experimental Study on the Compressive Strength of High Strength Concrete According to Testing Condition (시험조건과 고강도콘크리트의 압축강도 관계에 관한 실험적 연구)

  • Chin, Young-Gil;Lee, Yong-Su;Kim, Kwang-Seo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.2 no.2
    • /
    • pp.129-134
    • /
    • 2002
  • The strength and durability of concrete are affected by various factors such as the quality of material, mixing ratio, construction, the method of cure, time elapsed. the condition of test and etc., it is very difficult to pre-estimate the strength of concrete with the use of experimental specimen. The domestic standard of specimen cylindrical type and its sizes are both l0cm$\times$20cm and 15cm$\times$30cm, which are prescribed in KS F2405, and the loading speed is prescribed to test with 2~3kgf/$\textrm{cm}^2$ per second. The loading speed should have great effect on the compressive strength, but in reality in the construction site sometimes the loading speed is applied so dubiously that the value of the compressive strength can be unreliable. And the cross sectional area of a specimen should be level and smooth, otherwise it can be broken at a lower stress than the real strength through the eccentric or intensive working of the load. Capping should be carried out in order to measure the strength correctly. And used for capping are various materials such as capping compound, cement glue, plaster, mechanical grinding and etc. In this study, therefore, I have carried out an experiment on the relationship among the loading speed, the ratio of height to diameter of specimen, the method of capping, and the compressive strength, for the efficient quality control of concrete structures. So this study has been purposed to provide some basic data that can be used effectively at construction sites.

Effect of fineness of high lime fly ash on pozzolanic reactivity and ASR mitigation

  • Afshinnia, Kaveh;Rangaraju, Prasada R.
    • Computers and Concrete
    • /
    • v.20 no.2
    • /
    • pp.197-204
    • /
    • 2017
  • Typically, high lime fly ash (Class C) has been characterized as a fly ash, which at lower replacement levels is not as effective as the low lime (Class F) fly ash, in mitigating alkali-silica reaction (ASR) in portland cement concrete. The influence of fineness of Class C, obtained by grinding virgin fly ash into finer particles, on its pozzolanic reactivity and ASR mitigation performance was investigated in this study. In order to assess the pozzolanic reactivity of mortar mixtures containing virgin or ground fly ashes, the strength activity index (SAI) test and thermo-gravimetric analysis (TGA) were conducted on the mortar cubes and paste samples, respectively, containing virgin fly ash or two ground fly ashes. In addition, to evaluate any improvement in the ASR mitigation of ground fly ashes compared to that of the virgin fly ash, the accelerated mortar bar test (AMBT) was conducted on the mortar mixtures containing different dosages of either virgin or ground fly ashes. In all tests crushed glass aggregate was used as a highly reactive aggregate. Results from this study showed that the finest fly ash (i.e., with an average particle size of 3.1 microns) could increase the flow ability along with the pozzolanic reactivity of the mortar mixture. However, results from this study suggested that the fineness of high lime fly ash does not seem to have any significant effect on ASR mitigation.

A Study on Physical Properties of Mortar Mixed with Fly-ash as Functions of Mill Types and Milling Times

  • Seo, Sung Kwan;Chu, Yong Sik;Shim, Kwang Bo;Jeong, Jae Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.4
    • /
    • pp.435-443
    • /
    • 2016
  • Coal ash, a material generated from coal-fired power plants, can be classified as fly ash and bottom ash. The amount of domestic fly ash generation is almost 6.84 million tons per year, while the amount of bottom ash generation is 1.51 million tons. The fly ash is commonly used as a concrete admixture and a subsidiary raw material in cement fabrication process. And some amount of bottom ash is used as a material for embankment and block. However, the recyclable amount of the ash is limited since it could cause deterioration of physical properties. In Korea, the ashes are simply mixed and used as a replacement material for cement. In this study, an attempt was made to mechanically activate the ash by grinding process in order to increase recycling rates of the fly ash. Activated fly ash was prepared by controlling the mill types and the milling times and characteristics of the mortar containing the activated fly ash was analyzed. When the ash was ground by using a vibratory mill, physical properties of the mortar mixed with such fly ash were higher than the mortar mixed with fly ash ground by a planetary mill.

Hydration and time-dependent rheology changes of cement paste containing ground fly ash

  • Chen, Wei;Huang, Hao
    • Computers and Concrete
    • /
    • v.11 no.1
    • /
    • pp.39-49
    • /
    • 2013
  • The use of ground fly ash in concrete can increase the risk of slump loss due to the drastic surface change of the particles after the grinding treatment and the accelerated reaction compared to the untreated ash. This study is aimed at the early age hydration and time-dependent rheology changes of cement paste containing ground fly ash. An original fly ash is ground into different fineness and the hydration of cement paste containing the ground fly ash is monitored with the ultrasound propagation method. The zeta potentials of the solid particles are measured and the changes of rheological parameters of the cement pastes with time are analyzed with a rheometer. A particle packing model is used to probe packing of the solid particles. The results show that the early age hydration of the paste is strongly promoted by replacing Portland cement with fly ash up to 30 percent (by mass), causing increase of the yield stress of the paste. The viscosity of a paste containing ground fly ash is lower than that containing the untreated ash, which is explained by the denser packing of the solid particles.

Physical and Chemical Properties of Nano-slag Mixed Mortar

  • Her, Jae-Won;Lim, Nam-Gi
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.6
    • /
    • pp.145-154
    • /
    • 2010
  • As buildings have become higher and larger, the use of high performance concrete has increased. With this increase, interest in and use of ultra fine powder admixture is also on the rise. The silica fume and BSF are the admixtures currently being used in Korea. However, silica fume is exclusively import dependent because it is not produced in Korea. In the case of BFS, it greatly improves concrete fluidity and long-term strength. But a problem exists in securing early strength. Furthermore, air-cooled slag is being discarded, buried in landfills, or used as road bed materials because of its low activation energy. Therefore, we investigated in this study the usability of nano-slag (both rapidly-chilled and air-cooled) as an alternative material to the silica fume. We conducted a physic-chemical analysis for the nano-slag powder and performed a mortar test to propose quality standards. The analysis and testing were done to find out the industrial usefulness of the BFS that has been grinded to the nano-level.

Effect of Neutralized Red Mud on the Strength Properties of Cement Paste (시멘트 페이스트의 강도특성에 미치는 중화 레드머드의 영향)

  • Kang, Hye Ju;Kang, Suk-pyo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.27-28
    • /
    • 2020
  • In this study, as a measure to recycle red mud, which is a byproduct of the Bayer Process, red mud was manufactured as liquid and recycled without drying and grinding. Previous studies have shown that mechanical performance decreases when liquid red mud is applied to cement concrete. Therefore, in this study, liquid red mud was neutralized with nitric acid and applied to cement paste to examine the properties of cement paste according to the addition of red mud. As a result, the compressive strength of 10% liquid red mud decreased by 37.7% compared to Plain, and 10% liquid red mud indicates similar strength to Plain and restores the strength.

  • PDF

Early-Age Performance of Intersection Pavement Constructed Using Precast Concrete Panels (프리캐스트 패널을 이용한 교차로 구간 도로 포장 초기 공용성 분석)

  • Oh, Han-Jin;Hwang, Ju-Hwan;Kim, Seong-Min;Rhee, Suk-Keun;Park, Sung-Ki
    • International Journal of Highway Engineering
    • /
    • v.13 no.2
    • /
    • pp.115-123
    • /
    • 2011
  • This study was conducted to investigate the early-age behavior and performance of precast pavements constructed by replacing existing asphalt pavements for an intersection in urban bus only lanes. The monitoring items included level differences between asphalt pavement and precast panels at the beginning and ending locations of the precast pavement, level differences and joint widths between precast panels, precast panel settlement, and skid resistance of the panel surface. At a certain time after the construction, the diamond grinding method was applied and its effect was also investigated. The monitoring results showed that as time went by, the panel level, joint width, settlement, and skid resistance were not much varied. That implied the stable sustaining of external loads by the precast pavements. In addition, it was verified that employing diamond grinding could reduce the level differences between precast panels.