• Title/Summary/Keyword: Concrete filled

Search Result 988, Processing Time 0.024 seconds

Anchored blind bolted composite connection to a concrete filled steel tubular column

  • Agheshlui, Hossein;Goldsworthy, Helen;Gad, Emad;Mirza, Olivia
    • Steel and Composite Structures
    • /
    • v.23 no.1
    • /
    • pp.115-130
    • /
    • 2017
  • A new type of moment-resisting bolted connection was developed for use in composite steel- concrete construction to connect composite open section steel beams to concrete filled steel square tubular columns. The connection was made possible using anchored blind bolts along with two through bolts. It was designed to act compositely with the in-situ reinforced concrete slab to achieve an enhanced stiffness and strength. The developed connection was incorporated in the design of a medium rise (five storey) commercial building which was located in low to medium seismicity regions. The lateral load resisting system for the design building consisted of moment resisting frames in two directions. A major full scale test on a sub-assembly of a perimeter moment-resisting frame of the model building was conducted to study the system behaviour incorporating the proposed connection. The behaviour of the proposed connection and its interaction with the floor slab under cyclic loading representing the earthquake events with return periods of 500 years and 2500 years was investigated. The proposed connection was categorized as semi rigid for unbraced frames based on the classification method presented in Eurocode 3. Furthermore, the proposed connection, composite with the floor slab, successfully provided adequate lateral load resistance for the model building.

An Experimental Study on the Evaluation of Fire-Resist Performance of High-Strength Concrete Filled steel Tube Column at Fire (화재가열을 받은 고강도 콘크리트를 충전한 CFT 기둥의 내화성능 평가에 관한 실험적 연구)

  • Lee, Hyoung-Jun;Lee, Tae-Gyu;Kim, Young-Sun;Han, Hee-Chul;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.05a
    • /
    • pp.193-197
    • /
    • 2008
  • Recently, it increases in use of CFT(Concrete filled steel tube, below CFT) that is an excellent internal force and deformation capacity because material and method are required to be diversification and High-Performance according to increase the super-high structure. And it is proposed to use high-strength Concrete Filled steel Tube Column. But it is difficult quantitative evaluation about fire-resist performance of CFT because steel tube bind concrete. Also, the case of high strength CFT is feared that spalling occur inside. Therefore, this study made CFT specimen that determine the factor(which is strength of concrete) and then CFT column was exposed to heating controlled as closely as possible the ISO-834 standard fire curve. Also, it tried to analyze internal temperature through nonlinear transient heat flow analysis.

  • PDF

Effect of tube area on the behavior of concrete filled tubular columns

  • Gupta, P.K.;Verma, V.K.;Khaudhair, Ziyad A.;Singh, Heaven
    • Computers and Concrete
    • /
    • v.15 no.2
    • /
    • pp.141-166
    • /
    • 2015
  • In the present study, a Finite Element Model has been developed and used to study the effect of diameter to wall thickness ratio (D/t) of steel tube filled with concrete under axial loading on its behavior and load carrying capacity. The model is verified by comparing its findings with available experimental results. Influence of thickness and area of steel tube on strength, ductility, confinement and failure mode shapes has been studied. Strength enhancement factors, load factor, confinement contribution, percentage of steel and ductility index are defined and introduced for the assessment. A parametric study by varying length and thickness of tube has been carried out. Diameter of tube kept constant and equals to 140 mm while thickness has been varied between 1 mm and 6 mm. Equations were developed to find out the ultimate load and confined concrete strength of concrete. Variation of lateral confining pressure along the length of concrete cylinder was obtained and found that it varies along the length. The increase in length of tubes has a minimal effect on strength of tube but it affects the failure mode shapes. The findings indicate that optimum use of materials can be achieved by deciding the thickness of steel tube. A better ductility index can be obtained with the use of higher thickness of tube.

Shear behavior of concrete-encased square concrete-filled steel tube members: Experiments and strength prediction

  • Yang, Yong;Chen, Xin;Xue, Yicong;Yu, Yunlong;Zhang, Chaorui
    • Steel and Composite Structures
    • /
    • v.38 no.4
    • /
    • pp.431-445
    • /
    • 2021
  • This paper presents experiments and theoretical analysis on shear behavior of eight concrete-encased square concrete-filled steel tube (CECFST) specimens and three traditional reinforced concrete (RC) specimens. A total of 11 specimens with the test parameters including the shear span-to-depth ratio, steel tube size and studs arrangement were tested to explore the shear performance of CECFST specimens. The failure mode, shear capacity and displacement ductility were thoroughly evaluated. The test results indicated that all the test specimens failed in shear, and the CECFST specimens enhanced by the interior CFST core exhibited higher shear capacity and better ductility performance than that of the RC specimens. When the other parameters were the same, the larger steel tube size, the smaller shear span-to-depth ratio and the existence of studs could lead to the more satisfactory shear behavior. Then, based on the compatible truss-arch model, a set of formulas were developed to analytically predict the shear strength of the CECFST members by considering the compatibility of deformation between the truss part, arch part and the steel tube. Compared with the calculated results based on several current design specifications, the proposed formulas could get more accurate prediction.

Axial behavior of square CFST encased seawater sea-sand concrete filled PVC/GFRP tube columns

  • Rong Su;Xian Li;Ziwei Li
    • Steel and Composite Structures
    • /
    • v.47 no.6
    • /
    • pp.781-794
    • /
    • 2023
  • In order to directly apply seawater and sea sand in construction without desalination, a type of square concrete-filled steel tube (CFST) encased with prefabricated seawater sea-sand concrete filled Polyvinyl Chloride (PVC)/Glass Fiber Reinforced Polymer (GFRP) tube column was proposed. Twenty short columns were tested under uniaxial loads, and the test parameters included inner tube types, seawater sea-sand concrete replacement ratios, concrete strength, the wrapping area of Carbon Fiber Reinforced Polymer (CFRP) strips and the thickness of GFRP tube. The effects of the parameters on failure modes, loading capacity, ductility and strain responses were discussed. All the tested specimens failed with serious buckling of the steel tubes and fracture of the inner tubes. The specimens had good residual bearing capacity corresponding to 64% to 88.9% of the peak capacity. The inner GFRP tubes and PVC tubes wrapped by CFRP strips provided stronger confinement to the core concrete, and were good choices for the proposed columns. Moreover, an analytical model for the composite column with different inner tube types was proposed.

Development of the Concrete for Concrete Filled Steel Tubular Columns (강관충전용 콘크리트의 재료개발에 관한 연구)

  • Kim, Jin-Cheol;Kim, Hoon;Park, Yon-Dong;Choi, Jin-Man;Lee, Deok-Chan;Lee, Do-Heon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.101-106
    • /
    • 1996
  • In this study, filling performance of concrete is investigated experimentally for the developmenmt of the concrete to be used in concrete filled steel tubular columns with inner diaphrams. Water-cement ratio with 3 levels, unit water contents with 5 levels, unit coarse aggregate contents with 5 levels, and slump flow with 3 levels are selected for test variables. For the estimation of the filling properties of the concrete, slump flow, V-type funnel time, U-type box height are measured and compared. A device which simulates the steel tubular column is designed and three kinds of concrete are tested with it. As the results, the filling performance is decreased with increasing coarse aggregate content. And, within the scope of this study, concretes with coarse aggregate content less than 880 kg/$\textrm{m}^3$ show good filling performance. To prevent excessive settlement of the concrete pumped into the steel tubular column, slump flow should be controlled within the limited range.

  • PDF

Confinement of concrete in two-chord battened composite columns

  • Szmigiera, Elzbieta
    • Steel and Composite Structures
    • /
    • v.19 no.6
    • /
    • pp.1511-1529
    • /
    • 2015
  • This article provides an analysis of the complex character of stress distribution in concrete in stub columns consisting of two HE160A steel sections held together with batten plates and filled with concrete. In such columns, evaluating the effect of concrete confinement and determining the extent of this confinement constitute a substantially complex problem. The issue was considered in close correspondence to rectangular cross section tubular elements filled with concrete, concrete-encased columns, as well as to steel-concrete columns in which reinforcement bars are connected with shackles. In the analysis of concrete confinement in two-chord columns, elements of computational methods developed for different types of composite cross sections were adopted. The achieved analytical results were compared with calculations based on test results.

Experimental Study on the Elastic Properties and Acid Resistance of Pine Needle Ash Concrete (솔잎재 콘크리트의 탄성특성 및 내산성에 관한 실험적 연구)

  • 남기성;민정기;김영익;서대석;이전성;성찬용
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.271-276
    • /
    • 1999
  • This study is performed to evaluate an elastic properties and acid-resistance of concrete using pine needle ash(PNA). Materials used for this experiment are PNA , normal portland cement, natural fine and coarse aggregate. Test results show that the highest ultrasonic pulse velocity , dynamic and static modulus of elasticity is achieved by 5% PNA filled PNA concrete, which has showed similar with those of thei normal cement concrete. Acid-resistance of PNA concrete is increased with increase of the contnet of PNA , it is 1.29 times of the normal cement concrete by 5% PNA fille PNA concrete an d2.57 times by 15% PNA filled PNA concrete . Accordingly , PNA concrete wil greatly improve the properties of concrete.

  • PDF

Experimental study on the Physical and Mechanical Properties and Acid-Resistance of Concrete with Oyster Shell (패분을 혼입한 콘크리트의 물리.역학적 특성 및 내산성에 관한 실험적 연구)

  • 서대석;민정기;정현정;남기성;성찬용
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.319-323
    • /
    • 1999
  • This study is performed to evaluate the physical and mechanical properties and acid-resistance of oyster shell concrete. The result shows that the unit weights of concrete with oyster shell are decreased by 1∼2% than that of the normla cement concrete. The highest strength is achieved by 2.5% oyster shell filled oyster shell concrete, it is increased compressive strength by 4% , tensile strength by 6% and bending strength by7% than that of the normal cement concrete, respectively . The acid-resistanceis increased with increase of the content of oyster shell. It is 1.6 times of the normal cement concrete by 15% oyster shell filled oyster shell concrete. Accordingly, oyster shell concrete will improve the properties of concrete.

  • PDF

Eccentric performance of CFST columns jacketed with steel tube and sandwiched concrete

  • Weijie Li;Yiyan Lu;Yue Huang;Shan Li
    • Steel and Composite Structures
    • /
    • v.48 no.1
    • /
    • pp.89-102
    • /
    • 2023
  • This study investigates the eccentric performance of concrete-filled steel tubular (CFST) stub columns strengthened with steel tube and sandwiched concrete (STSC) jackets. It was revealed that the STSC jacketing method effectively weakened the cracking of concrete in CFST columns on the convex side and the crash on the concave side. Substantial increases in the eccentric bearing capacities were demonstrated after strengthening. A numerical study was further conducted. The decrease in diameter-to-thickness ratio and increase in strength of outer tube contributed to increase in peak load of all components, whereas the increase in sandwiched concrete strength resulted in load increase on itself and had negligible effects on other components. The parametric study showed the effect of inner concrete strength on columns' bearing capacity was magnified after strengthening, whereas that of inner tube thickness was reduced. Within the parameters investigated, high-strength concrete and high-strength steel can be applied without the concern of early abrupt failure of inner low-strength concrete or steel tube.