DOI QR코드

DOI QR Code

Axial behavior of square CFST encased seawater sea-sand concrete filled PVC/GFRP tube columns

  • Rong Su (Jiangsu Key Laboratory of Environmental Impact and Structural Safety in Civil Engineering, China University of Mining and Technology) ;
  • Xian Li (Jiangsu Key Laboratory of Environmental Impact and Structural Safety in Civil Engineering, China University of Mining and Technology) ;
  • Ziwei Li (Jiangsu Key Laboratory of Environmental Impact and Structural Safety in Civil Engineering, China University of Mining and Technology)
  • Received : 2022.07.04
  • Accepted : 2023.05.29
  • Published : 2023.06.25

Abstract

In order to directly apply seawater and sea sand in construction without desalination, a type of square concrete-filled steel tube (CFST) encased with prefabricated seawater sea-sand concrete filled Polyvinyl Chloride (PVC)/Glass Fiber Reinforced Polymer (GFRP) tube column was proposed. Twenty short columns were tested under uniaxial loads, and the test parameters included inner tube types, seawater sea-sand concrete replacement ratios, concrete strength, the wrapping area of Carbon Fiber Reinforced Polymer (CFRP) strips and the thickness of GFRP tube. The effects of the parameters on failure modes, loading capacity, ductility and strain responses were discussed. All the tested specimens failed with serious buckling of the steel tubes and fracture of the inner tubes. The specimens had good residual bearing capacity corresponding to 64% to 88.9% of the peak capacity. The inner GFRP tubes and PVC tubes wrapped by CFRP strips provided stronger confinement to the core concrete, and were good choices for the proposed columns. Moreover, an analytical model for the composite column with different inner tube types was proposed.

Keywords

Acknowledgement

This research was supported by the National Natural Science Foundation of China (grant number 51978656) and Key Research and Development Project of Xuzhou (KC19207). The financial supports are gratefully acknowledged.

References

  1. Adnan, Parung, H., Tjaronge, M.W. and Djamaluddin, R. (2017), "Compressive strength of marine material mixed concrete", Mater. Sci. Eng., 271 (1), 12066. https://doi.org/10.1088/1757-899X/271/1/012066.
  2. ASTM D1141-98(R2013) (2013), Standard practice for the preparation of substitute ocean water, American Society of Testing Materials; West Conshohocken, PA, United States of America.
  3. ASTM D2290-19 (2019), Standard test method for apparent hoop tensile strength of plastic or reinforced plastic pipe, American Society of Testing Materials; West Conshohocken, PA, United States of America.
  4. Berradia, M. and Kassoul, A. (2018), "Ultimate strength and strain models proposed for CFRP confined concrete cylinders", Steel Compos Struct., 29(4), 465-481. https://doi.org/10.12989/scs.2018.29.4.465.
  5. Chan, C.W., Yu, T. and Zhang, S.S. (2018), "Compressive behaviour of square fibre-reinforced polymer-concrete-steel hybrid multi-tube concrete columns", Adv. Struct. Eng., 21(8), 1162-1172. https://doi.org/10.1177/1369433217732499.
  6. Chen, G.M., Liu, P.C., Jiang, T., He, Z.B., Wang, X.M., Lam, L. and Chen, J.F. (2020), "Effects of natural seawater and sea sand on the compressive behaviour of unconfined and carbon fibrerein-forced polymer-confined concrete", Adv. Struct. Eng., 23(14), 3102-3116. https://doi.org/10.1177/1369433220920459.
  7. Chen, Z.P., Liang, Y.H., Zhao, X.B. and Zhou, J. (2020), "Investigation on hysteretic behavior of embedded pvc pipe confined reinforced high strength concrete columns", Mater., 13(3), 737. https://doi.org/10.3390/ma13030737.
  8. Cheng, S., Feng, P., Bai, Y. and Ye, L.P. (2016), "Load-strain model for steel-concrete-FRP-concrete columns in axial compression", J. Compos. Constr., 20(5), 4016017. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000664.
  9. Dhondy, T., Remennikov, A. and Neaz Sheikh, M. (2020), "Properties and application of sea sand in sea sand-seawater concrete", J. Mater. Civil. Eng., 32(12), 4020392. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003475.
  10. Elshami, A., Bonnet, S., Khelidj, A. and Sail, L. (2020), "Effectiveness of corrosion inhibitors in simulated concrete pore solution", Eur. J. Environ. Civil Eng., 24(13), 2130-2150. https://doi.org/10.1080/19648189.2018.1500309.
  11. Fakharifar, M. and Chen, G. (2017), "FRP-confined concrete filled PVC tubes: A new design concept for ductile column construction in seismic regions", Construct. Build. Mater., 130, 1-10. https://doi.org/10.1016/j.conbuildmat.2016.11.056.
  12. Fang, Y., Yu, F., Guan, Y.C., Wang, Z.W., Feng, C.C. and Li, D.A. (2020), "A model for predicting the stress-strain relation of PVC-CFRP confined concrete stub columns under axial compression", Struct., 26, 259-270. https://doi.org/10.1016/j.istruc.2020.04.023.
  13. Feng, P., Cheng, S., Bai, Y. and Ye, L.P. (2015), "Mechanical behavior of concrete-filled square steel tube with FRP-confined concrete core subjected to axial compression", Compos. Struct., 123, 312-324. https://doi.org/10.1016/j.compstruct.2014.12.053.
  14. Feng, P., Qiang, H.L. and Ye, L.P. (2017), "Discussion and definition on yield points of materials, members and structures", Eng. Mech., 34(03), 36-46. https://doi.org/10.6052/j.issn.1000-4750.2016.03.0192.
  15. Gao, C., Huang, L., Yan, L., Jin, R. and Kasal, B. (2019), "Strength and ductility improvement of recycled aggregate concrete by polyester FRP-PVC tube confinement", Compos. Part B: Eng., 162, 178-197. https://doi.org/10.1016/j.compositesb.2018.10.102.
  16. Gupta, P.K. and Verma, V.K. (2016), "Study of concrete-filled unplasticized poly-vinyl chloride tubes in marine environment", Proceedings Inst. Mech. Eng., Part M: J. Eng. Mar. Environ., 230(2), 229-240. https://doi.org/10.1177/1475090214560448.
  17. Han, L.H. and Yang, Y.F. (2001), "Study on axial bearing capacity of concrete-filled-steel-tube columns with rectangular section", China Civil Eng. J., 34(04), 22-31. https://doi.org/10.3321/j.issn:1000-131X.2001.04.004.
  18. Han, L.H., Zhao, X.L. and Tao, Z. (2001), "Tests and mechanics model for concrete-filled SHS stub columns, columns and beam-columns", Steel Compos. Struct., 1(1), 51-74. https://doi.org/10.12989/scs.2001.1.1.051.
  19. Harajli, M.H. (2006), "Axial stress-strain relationship for FRP confined circular and rectangular concrete columns", Cement Concrete Comp., 28(10), 938-948. https://doi.org/10.1016/j.cemconcomp.2006.07.005.
  20. Jiang, T. and Teng, J.G. (2007), "Analysis-oriented stress-strain models for FRP-confined concrete", Eng. Struct., 29(11), 2968-2986. https://doi.org/10.1016/j.engstruct.2007.01.010.
  21. Li, G., Yang, Z., Lang, Y. and Fang, C. (2016), "Behavior of CFST columns with inner CFRP tubeunder biaxial eccentric loading", Steel Compos. Struct., 22(6), 1487-1505. https://doi.org/10.12989/scs.2016.22.6.1487.
  22. Li, Y. L. and Zhao, X. L. (2020), "Hybrid double tube sections utilising seawater and sea sand concrete, FRP and stainless steel", Thin-Wall. Struct., 149, 106643. https://doi.org/10.1016/j.tws.2020.106643.
  23. Li, Y.L., Teng, J.G., Zhao, X.L. and Singh Raman, R.K. (2018a), "Theoretical model for seawater and sea sand concrete-filled circular FRP tubular stub columns under axial compression", Eng. Struct., 160, 71-84. https://doi.org/10.1016/j.engstruct.2018.01.017.
  24. Li, Y.L., Zhao, X.L. and Singh Raman, R.K. (2018b), "Mechanical properties of seawater and sea sand concrete-filled FRP tubes in artificial seawater", Construct. Build. Mater., 191, 977-993. https://doi.org/10.1016/j.conbuildmat.2018.10.059.
  25. Li, Y.L., Zhao, X.L., Singh Raman, R.K. and Al-Saadi, S. (2016a), "Experimental study on seawater and sea sand concrete filled GFRP and stainless steel tubular stub columns", Thin-Wall. Struct., 106, 390-406. https://doi.org/10.1016/j.tws.2016.05.014.
  26. Li, Y.L., Zhao, X.L., Singh Raman, R.K. and Al-Saadi, S. (2016b), "Tests on seawater and sea sand concrete-filled CFRP, BFRP and stainless steel tubular stub columns", Thin-Wall. Struct., 108, 163-184. https://doi.org/10.1016/j.tws.2016.08.016.
  27. Li, Y.L., Zhao, X.L., Singh Raman, R.K. and Yu, X. (2018c), "Axial compression tests on seawater and sea sand concretefilled double-skin stainless steel circular tubes", Eng. Struct., 176, 426-438. https://doi.org/10.1016/j.engstruct.2018.09.040.
  28. Liao, F.Y., Hou, C., Zhang, W.J. and Ren, J. (2019), "Experimental investigation on sea sand concrete-filled stainless steel tubular stub columns", J. Construct. Steel Res., 155, 46-61. https://doi.org/10.1016/j.jcsr.2018.12.009.
  29. Long, Y. L., Li, W.T., Dai, J.G. and Gardner, L. (2018), "Experimental study of concrete-filled CHS stub columns with inner FRP tubes", Thin-Wall. Struct., 122, 606-621. https://doi.org/10.1016/j.tws.2017.10.046.
  30. Louk Fanggi, B.A. and Ozbakkaloglu, T. (2015), "Square FRP-HSC-steel composite columns: Behavior under axial compression", Eng. Struct., 92, 156-171. https://doi.org/10.1016/j.engstruct.2015.03.005.
  31. Natarajan, S., Pillai, N.N. and Murugan, S. (2019), "Experimental investigations on the properties of epoxy-resin-bonded cement concrete containing sea sand for use in unreinforced concrete applications", Mater., 12(4), 645. https://doi.org/10.3390/ma12040645.
  32. Ozbakkaloglu, T. and Lim, J.C. (2013), "Axial compressive behavior of FRP-confined concrete: Experimental test database and a new design-oriented model", Compos. Part B: Eng., 55, 607-634. https://doi.org/10.1016/j.compositesb.2013.07.025.
  33. Pan, C.G., Li, X. and Mao, J.H. (2020), "The effect of a corrosion inhibitor on the rehabilitation of reinforced concrete containing sea sand and seawater", Mater., 13(6), 1480. https://doi.org/10.3390/ma13061480.
  34. Park, J.W. and Choi, S.M. (2013), "Structural behavior of CFRP strengthened concrete-filled steel tubes columns under axial compression loads", Steel Compos. Struct., 14(5), 453-472. https://doi.org/10.12989/scs.2013.14.5.453.
  35. Ranney, T.A. and Parker, L.V. (1995), "Susceptibility of ABS, FEP, FRE, FRP, PTFE, and PVC well casings to degradation by chemicals", Special report 95-l; US Army Corps of Engineerings.
  36. Sajedi, F. and Shariati, M. (2019), "Behavior study of NC and HSC RCCs confined by GRP casing and CFRP wrapping", Steel. Compos. Struct., 30(5), 417-432. https://doi.org/10.12989/scs.2019.30.5.417.
  37. Sakino, K., Nakahara, H., Morino, S. and Nishiyama, I. (2004), "Behavior of centrally loaded concrete-filled steel-tube short columns", J. Struct. Eng., 130(2), 180-188. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(180).
  38. Su, R., Li, X. and Xu, S. (2022), "Axial behavior of circular CFST encased seawater sea-sand concrete filled PVC/GFRP tube columns", Construct. Build. Mater., 353, 129159. https://doi.org/10.1016/j.conbuildmat.2022.129159.
  39. Tao, Y., Gu, J.B., Chen, J.F. and Feng, P. (2021), "Behavior of hybrid CFST with FRP-confined UHPC core under axial compression", Steel Compos. Struct., 40(1), 75-85. https://doi.org/10.12989/scs.2021.40.1.075.
  40. Teng, J. G., Wang, Z., Yu, T., Zhao, Y. and Li, L. (2018), "Double-tube concrete columns with a high-strength internal steel tube: Concept and behaviour under axial compression", Adv. Struct. Eng., 21(10), 1585-1594. https://doi.org/10.1177/1369433217746838.
  41. Teng, J.G., Huang, Y.L., Lam, L. and Ye, L.P. (2007), "Theoretical model for fiber-reinforced polymer-confined concrete", J. Compos. Constr., 11(2), 201-210. https://doi.org/10.1061/(ASCE)1090-0268(2007)11:2(201).
  42. Wang, J.Y. and Yang, Q.B. (2012), "Investigation on compressive behaviors of thermoplastic pipe confined concrete", Construct. Build. Mater., 35, 578-585. https://doi.org/10.1016/j.conbuildmat.2012.04.017.
  43. Wang, Z.B., Tao, Z. and Yu, Q. (2017), "Axial compressive behaviour of concrete-filled double-tube stub columns with stiffeners", Thin-Wall. Struct., 120, 91-104. https://doi.org/10.1016/j.tws.2017.08.025.
  44. Wei, Y., Bai, J.W., Zhang, Y.R., Miao, K.T. and Zheng, K.Q. (2021), "Compressive performance of high-strength seawater and sea sand concrete-filled circular FRP-steel composite tube columns", Eng. Struct., 240, 112357. https://doi.org/10.1016/j.engstruct.2021.112357.
  45. Xiao, Y. and Wu, H. (2000), "Compressive behavior of concrete confined by carbon fiber composite jackets", J. Mater. Civil Eng., 12(2), 139-146. https://doi.org/10.1061/(ASCE)0899-1561(2000)12:2(139).
  46. Xiong, M.X., Lan, Z.H., Chen, G.M., Lu, Y.C. and Xu, Z. (2021), "Behavior of FRP-HSC-steel tubular columns under axial compression: a comparative study", Compos. Struct., 261, 113566. https://doi.org/10.1016/j.compstruct.2021.113566.
  47. Yang, S.T., Xu, J.J., Zang, C.H., Li, R., Yang, Q.B. and Sun, S.G. (2019), "Mechanical properties of alkali-activated slag concrete mixed by seawater and sea sand", Construct. Build. Mater., 196, 395-410. https://doi.org/10.1016/j.conbuildmat.2018.11.113.
  48. Yang, S.T., Yang, C., Huang, M.L., Liu, Y., Jiang, J.T. and Fan, G.X. (2018), "Study on bond performance between FRP bars and seawater coral aggregate concrete", Construct. Build. Mater., 173, 272-288. https://doi.org/10.1016/j.conbuildmat.2018.04.015.
  49. Yu, F., Xu, G.S., Niu, D.T., Cheng, A.C., Wu, P. and Kong, Z.Y. (2018), "Experimental study on PVC-CFRP confined concrete columns under low cyclic loading", Construct. Build. Mater., 177, 287-302. https://doi.org/10.1016/j.conbuildmat.2018.05.111.
  50. Yu, F., Yin, W.Y., Cheng, A.C., Vu, Q.V., Wang, S.L. and Kong, Z.Y. (2021), "Seismic behavior of PVC-CFRP confined reinforced concrete columns: An experimental study", Struct., 32, 313-328. https://doi.org/10.1016/j.istruc.2021.03.003.
  51. Zeng, J.J., Lv, J.F., Lin, G., Guo, Y.C. and Li, L.J. (2018), "Compressive behavior of double-tube concrete columns with an outer square FRP tube and an inner circular high-strength steel tube", Construct. Build. Mater., 184, 668-680. https://doi.org/10.1016/j.conbuildmat.2018.07.034.
  52. Zhang, B., Qi, Y.J., Huang, T., Zhang, Q.B., Hu, Y. and Hu, X.M. (2019), "Effect of fiber angles on hybrid double-tube concrete columns under monotonic axial compression", Adv. Civil Eng., 2019, 1-19. https://doi.org/10.1155/2019/2363185.
  53. Zhang, Q.T., Xiao, J.Z., Liao, Q.X. and Duan, Z.H. (2019), "Structural behavior of seawater sea-sand concrete shear wall reinforced with GFRP bars", Eng. Struct., 189, 458-470. https://doi.org/10.1016/j.engstruct.2019.03.101.