• Title/Summary/Keyword: Concrete deck

Search Result 631, Processing Time 0.028 seconds

A Development of Strength Prediction Model of Epoxy Asphalt Concrete for Traffic Opening (교통개방을 위한 에폭시 아스팔트 콘크리트의 강도 예측모델 개발)

  • Baek, Yu Jin;Jo, Shin Haeng;Park, Chang Woo;Kim, Nakseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6D
    • /
    • pp.599-605
    • /
    • 2012
  • It is important to decide traffic opening time for construction plan of epoxy asphalt pavement. For this purpose, strength prediction model of epoxy asphalt concrete is required. In this study, Marshall stability was measured according to temperature and time for making strength properties equation. Strength prediction model was developed using chemical kinetics considering temperature variation. The traffic opening time of epoxy asphalt pavement on bridge deck has been predicted using the developed model. The prediction and actual traffic opening times were different by 17-days, because weathers of year 2009-2011 used in prediction model were different from weather of year 2012. When the prediction model used the actually measured temperatures of pavement, the difference between real opening time and prediction opening time was two days. The correlation analysis result between measured strength and prediction strength revealed that the $R^2$ using accurate temperature of pavement was 0.95. An improved precise prediction result is to be obtained if the prediction model uses accurate temperature data of pavement.

Analysis of Efficient Investment for Apartment Gang Form Work by FTA Technique (FTA 기법을 이용한 아파트 갱폼작업의 효율성 분석)

  • Son, Ki-Sang;Kim, Si-Ok
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.1
    • /
    • pp.87-93
    • /
    • 2002
  • In this thesis using FTA technique, the author proposes a new method of analysis of some accidents in construction work. Some efficient plans of safe facility investment are made out. For this study, I referred to 'The Death Accident in Construction Works', which have been published by Korea Industrial Safety Corporation from 1993 to 1999 for 6 years. I selected some of apartment constructions which have caused many deaths for the purpose of analysis in the study. I found that the concrete work using ferro-deck takes more deaths than the conventional construction. After finding this, I selected GANG FORM works using ferro-concrete which is the most widely used but causes many accidents. On the basis of the classification, I try to do some quantitative analyses by adding the death frequency and material factors. In order to draw up the most efficient investment plan, it is imperative that FT diagram be made out and that factors. In order to draw up the most efficient investment plan, it is imperative that FT diagram be made out and that minimal Cut Set be needed. It requires a great deal to labor and time to get Minimal Cut Set. The Minimal Cut Set which is formed of these process is the main factor to analyze disaster in the work. It is desirable that we add calculated percentage of accidents to these factors to these factors in value order, that is to say, from the high cost to low cost.

Determination of structural behavior of Bosporus suspension bridge considering construction stages and different soil conditions

  • Gunaydin, Murat;Adanur, Suleyman;Altunisik, Ahmet Can;Sevim, Baris;Turker, Emel
    • Steel and Composite Structures
    • /
    • v.17 no.4
    • /
    • pp.405-429
    • /
    • 2014
  • In this paper, it is aimed to determine the structural behavior of suspension bridges considering construction stages and different soil conditions. Bosporus Suspension Bridge connecting the Europe and Asia in Istanbul is selected as an example. Finite element model of the bridge is constituted using SAP2000 program considering existing drawings. Geometric nonlinearities are taken into consideration in the analysis using P-Delta large displacement criterion. The time dependent material strength of steel and concrete and geometric variations is included in the analysis. Time dependent material properties are considered as compressive strength, aging, shrinkage and creep for concrete, and relaxation for steel. To emphases the soil condition effect on the structural behavior of suspension bridges, each of hard, medium and soft soils are considered in the analysis. The structural behavior of the bridge at different construction stages and different soil conditions has been examined. Two different finite element analyses with and without construction stages are carried out and results are compared with each other. At the end of the analyses, variation of the displacement and internal forces such as bending moment, axial forces and shear forces for bridge deck and towers are given in detail. Also, displacement and stresses for bridge foundation are given with detail. It can be seen from the analyses that there are some differences between both analyses (with and without construction stages) and the results obtained from the construction stages are bigger. It can be stated that the analysis without construction stages cannot give the reliable solutions. In addition, soil condition have effect on the structural behavior of the bridge. So, it is thought that construction stage analysis using time dependent material properties, geometric nonlinearity and soil conditions effects should be considered in order to obtain more realistic structural behavior of suspension bridges.

Impact Factor for Safety Evaluation of Highway Bridges (도로교의 간이 내하력평가를 위한 충격계수의 산출)

  • 정철헌;김영진;박칠림
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.1
    • /
    • pp.109-116
    • /
    • 1995
  • In tnis study, the impact factors of a simply supported highway bridge due to a vehicle moving across the span are presented. This variable has received cons~derable attention in recent years, both analytically and experimentally. The KBDC specification equation has a maximum 30 percent value which decreases with span length. The results of field tests showed that the dynamic load effects are mostly lower t.hari present KBDC value and that the impact factor does not vary significantly with spar1 as implied in KHUC. The rnain parameters affecting lmpact are the br dge approach. bumps, and other pavement roughness. In thls study, based on test results, three values of impact factors are provided by correlating the roughness of the surface to the deck condition survey values. The present study proposes reasonable impact factors for the strength evaluation of highway bridges. This study may be extended to the evaluation of existing brdges.

An Experimental Study on the Temperature Difference between the Top and Bottom Flange in Steel Girder without Concrete Slab (콘크리트 슬래브가 없는 강재주형에서 상하연 온도차에 대한 실측연구)

  • Shin, Dong-Wook;Kim, Kyoung-Nam;Jung, Kyoung-Sup;Lee, Seong-Haeng
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.4
    • /
    • pp.99-106
    • /
    • 2014
  • In order to study the reasonable design thermal loads, the steel box girder bridge specimen which have no concrete slab was manufactured with the real size dimension. The temperature data were measured for 5 month at the 18 thermo gauges which were attached according to height. The temperature differences between the top and bottom flange in steel box girder specimen were calculated and the temperature gradient models were proposed by the probabilistic method. This proposed model showed a correlation of approximately 97% when compared with the similar model of Euro Code. Thus, the temperature gradient models which were suggested in this study may be used as the basis data in calculating the design load temperature.

Soil-structure-foundation effects on stochastic response analysis of cable-stayed bridges

  • Kuyumcu, Zeliha;Ates, Sevket
    • Structural Engineering and Mechanics
    • /
    • v.43 no.5
    • /
    • pp.637-655
    • /
    • 2012
  • In this study, stochastic responses of a cable-stayed bridge subjected to the spatially varying earthquake ground motion are investigated by the finite element method taking into account soil-structure interaction (SSI) effects. The considered bridge in the analysis is Quincy Bay-view Bridge built on the Mississippi River in between 1983-1987 in Illinois, USA. The bridge is composed of two H-shaped concrete towers, double plane fan type cables and a composite concrete-steel girder deck. In order to determine the stochastic response of the bridge, a two-dimensional lumped masses model is considered. Incoherence, wave-passage and site response effects are taken into account for the spatially varying earthquake ground motion. Depending on variation in the earthquake motion, the response values of the cable-stayed bridge supported on firm, medium and soft foundation soil are obtained, separately. The effects of SSI on the stochastic response of the cable-stayed bridge are also investigated including foundation as a rigidly capped vertical pile groups. In this approach, piles closely grouped together beneath the towers are viewed as a single equivalent upright beam. The soil-pile interaction is linearly idealized as an upright beam on Winkler foundation model which is commonly used to study the response of single piles. A sufficient number of springs on the beam should be used along the length of the piles. The springs near the surface are usually the most important to characterize the response of the piles surrounded by the soil; thus a closer spacing may be used in that region. However, in generally springs are evenly spaced at about half the diameter of the pile. The results of the stochastic analysis with and without the SSI are compared each other while the bridge is under the sway of the spatially varying earthquake ground motion. Specifically, in case of rigid towers and soft soil condition, it is pointed out that the SSI should be significantly taken into account for the design of such bridges.

Development of Analysis Model for U-Channel Bridge (U-Channel Bridge의 해석모델 개발)

  • Choi, Dong-Ho;Kim, Yang-Bae;Lee, Joo-Ho;Park, Myoung-Gyun;Kim, Yong-Sik;Kim, Sung-Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.277-280
    • /
    • 2008
  • In this paper behavior of U-Channel Bridge (UCB) was studied, and a new analysis model was proposed. Most of the time, permanent and traffic load actions are directly transmitted to main beams located under the carriageway, one of the most distinctive features of UCB is that the edge beams that support the bridge are above the deck, in contrast with a conventional overpass system. In This study models used with the frame elements, the frame and plate elements, and the solid elements were constructed. Assuming that the results of solid models were similar to the real behavior of UCB, results of another models was compared. The results of the models used with the frame and plate elements were similar to the results of solid models, the model used with the frame and plate elements was proposed as an analysis model.

  • PDF

A Experimental Comparison Study on Structural Behavior of Prefabricated Bridge (조립식 바닥판 교량의 거동에 대한 실험적 비교 연구)

  • Han, Man-Yup;Kim, Seong-Dong;Jin, Kyung-Seok;Kang, Sang-Hun;Cho, Byung-Ku
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.25-28
    • /
    • 2008
  • Currently, the prefabricated bridge having the effects to reduce the term of works and the cost of construction is often studied and countries such as America have already developed members, the parts of it, and the technique of construction. In addition, they have supplied them to the fields. The study of prefabricated method of steel composite bridge, which has the precast deck - plate and main girder fixed by high tension bolt and can resist horizontal sheer, is being progressed. However, it is difficult to understand the characteristics of the prefabricated bridge's behavior when the superstructure of the prefabricated method is analyzed by applying to the analysis model of existing bridges. Therefore, this study has the purpose of understanding real structural behavior of prefabricated bridge through comparison and analysis between the structural analysis model reflecting the characteristics of the real prefabricated bridge's superstructure and real size experiment.

  • PDF

Flexural Capacity of the Profiled Steel Composite Beams with Truss Deck Plate (트러스 데크를 사용한 강판성형 합성보의 휨성능 평가)

  • Heo, Byung Wook;Kwak, Myong Keun;Bae, Kyu Woong;Jung, Sang Min;Kang, Suk Kuy
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.4
    • /
    • pp.413-423
    • /
    • 2007
  • Slimfloor composite-beam systems could considerably reduce the story height of a building if the steel beam would be installed deep into the concrete floor slab. However, as the depth of the steel beam's installation is limited, it cannot cope with the various demands of building systems. To address this problem, a profiled steel beam section that can control the depth of the steel beam's and slabs' installation was developed in this study. Presented herein are the results of an experiment that was conducted focusing on the flexural behavior of the partially connected composite beams with profiled steel beams encased in composite concrete slabs. Five full-scale specimens with different slab types, with or without shear connection and reinforcement bars, were constructed and tested in this study. As a result, the shear bond stress without an additional shear connection was found to be $0.20{\sim}0.76N/mm^2$due to the inherent mechanical and chemical bond stress.

Diverse modeling techniques, parameters, and assumptions for nonlinear dynamic analysis of typical concrete bridges with different pier-to-deck connections: which to use and why

  • Morkos, B.N.;Farag, M.M.N.;Salem, S.;Mehanny, S.S.F.;Bakhoum, M.M.
    • Earthquakes and Structures
    • /
    • v.22 no.3
    • /
    • pp.245-261
    • /
    • 2022
  • Key questions to researchers interested in nonlinear analysis of skeletal structures are whether the distributed plasticity approach - albeit computationally demanding - is more reliable than the concentrated plasticity to adequately capture the extent and severity of the inelastic response, and whether force-based formulation is more efficient than displacement-based formulation without compromising accuracy. The present research focusing on performance-based seismic response of mid-span concrete bridges provides a pilot holistic investigation opting for some hands-on answers. OpenSees software is considered adopting different modeling techniques, viz. distributed plasticity (through either displacement-based or force-based elements) and concentrated plasticity via beam-with-hinges elements. The pros and cons of each are discussed based on nonlinear pushover analysis results, and fragility curves generated for various performance levels relying on incremental dynamic analyses under real earthquake records. Among prime conclusions, distributed plasticity modeling albeit inherently not relying on prior knowledge of plastic hinge length still somewhat depends on such information to ensure accurate results. For instance, displacement-based and force-based approaches secure optimal accuracy when dividing, for the former, the member into sub-elements, and satisfying, for the latter, a distance between any two consecutive integration points, close to the expected plastic hinge length. On the other hand, using beam-with-hinges elements is computationally more efficient relative to the distributed plasticity, yet with acceptable accuracy provided the user has prior reasonable estimate of the anticipated plastic hinge length. Furthermore, when intrusive performance levels (viz. life safety or collapse) are of concern, concentrated plasticity via beam-with-hinges ensures conservative predicted capacity of investigated bridge systems.