• Title/Summary/Keyword: Concrete cutting

Search Result 135, Processing Time 0.032 seconds

An experimental study on the development and verification of NCC(new concrete cutting) system

  • Park, Jong-Hyup;Han, Jong-Wook
    • Structural Engineering and Mechanics
    • /
    • v.65 no.2
    • /
    • pp.203-211
    • /
    • 2018
  • This paper introduces the development process of NCC(New Concrete Cutting) system and analyzes first verification test. Based on the first verification test results, some problems of NCC system have been newly modified. We carry out the second verification test. We tried to verify cutting performance and dust control efficiency of NCC system through the cutting test of concrete bridge piers. In particular, this verification test strives to solve the problem of concrete dust, which is the biggest problem of dry cutting method. The remaining dust problems in cutting section tried to solve through this verification test. This verification test of the NCC system shows that the dust problem of dry cutting method is closely controlled and solved. In conclusion, the proposed NCC method is superior to the dry cutting method in all aspects, including cutting performance, dust vacuum efficiency and cooling effect. The proposed NCC system is believed to be able to provide eco-friendly cutting technology to various industries, such as the removal of the SOC structures and the dismantling of nuclear plants, which have recently become a hot issue in the field of concrete cutting.

3D Cutting Machine of EPS Foam for Manufacturing Free-Formed Concrete Mold (비정형 콘크리트 거푸집 제작을 위한 EPS Foam의 3D 가공기계)

  • Seo, Junghwan;Hong, Daehie
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.1
    • /
    • pp.35-39
    • /
    • 2017
  • We used a construction method using a CNC milling machine, where free-formed molds were made by cutting EPS (Expanded PolyStyrene) foam with the CNC machine, to build free-formed buildings. CNC milling is off-the-shelf technology that can easily cut EPS foam; however its production cost is too high and the time to manufacture an EPS mold is too long. This paper proposes a novel cutting machine with a fast and cost effective mechanism to manufacture EPS concrete molds. Our machine comprises a cutter and Cartesian coordinate type moving mechanism, where the cutter cuts EPS foam using a hotwire in the shape of '$\sqcap$' and is capable of adjusting its cutting angle in real-time while keeping its cutting width. We proved through cutting experiments on the CNC machine that cutting time was greatly shortened compared to the conventional method and that the resulting concrete mold satisfied manufacturing precision.

Cutting-Line Sensing Methods for an Automated Concrete Pile Cutter (파일 두부정리 자동화 장비를 위한 두부정리선 센싱 방법)

  • Kim, Sung-Keun;Kim, Young-Suk;Lee, Junbok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6D
    • /
    • pp.985-993
    • /
    • 2006
  • The use of prefabricated concrete piles have been gradually increased in many construction sites. One of main works for building a concrete pile foundation is to crush a part of pile head which is compressed with more than $800kg/cm^2$. A pile cutting work is usually performed by a crusher and three to four skilled workers. Recent reports on the pile cutting work reveal that a lot of cracks which significantly reduce the strength of the pile and are frequently made during pile cutting operations and it is very repetitive and labor intensive work. To improve productivity, safety, and quality of the conventional concrete pile cutting work, the research on developing an automated concrete pile cutter has been performed. In this paper, sensing methods for detecting a pile cutting line are suggested with operation process algorithms. The suggested methods are very important to develop the automated pile cutter. A pilot-type of the automated pile cutter that adopt one of the suggested sensing methods, is developed and tested in a construction site.

An Experimental Verification on the Development of an Innovative Diamond Wire Saw Cutting Technology (새로운 다이아몬드 와이어 쏘 절단 기술 개발에 관한 실험적 검증)

  • Park, Jong Hyup;Chu, Baeksuk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.83-90
    • /
    • 2018
  • This paper introduces a innovative diamond wire saw cutting technology and its experimental verification that can be utilized for cutting heavy structures. While conventional diamond wire saw cutting technologies such as water cooled cutting method and dry cutting method cause severe environmental problems due to generating massive concrete sludge or dust scattering, the proposed method can eliminate those problems considerably. Through extensive experiments using heavy structure test bed and real bridge pier structure, comprehensive analysis and comparative evaluation about various cutting methods were performed. As a result, the innovative diamond wire saw cutting method could achieve a similar cutting and cooling performance to the water cooled cutting method without generating concrete sludge and it showed an improved cutting and cooling performance to the dry cutting method without dust scattering. Consequently it is confirmed that the suggested cutting technology can be a promising environment-friendly alternative in the field of heavy structure dismantling.

Investigation of Stress Changes in Concrete and Strands according to Cutting Order of the Strands in Pre-tensioned Concrete Slab (프리텐션 슬래브 구조에서 긴장강선 용접절단순서에 따른 긴장재 및 콘크리트의 응력변화 고찰)

  • Moon, Do-Young;Kim, Jang-Ho;Kim, Gyu-Seon;Yun, Man-Geun;Zi, Goang-Seup
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.419-429
    • /
    • 2009
  • This study focuses on the effect of the cutting order of prestressing strands on the strain change in the strands and on the state of stress of concrete, experimentally and numerically. In the experiment, strain of strands and of transversal reinforcement were measured for three different cutting orders during detensioning process by using flame-cutting procedure. The experimental results were compared with those obtained from the FE analysis. As a results of the experiment, it is confirmed that the cutting order of prestressing strands affected on the strain of strands as well as of transversal reinforcement. The FE analysis gave similar results to those obtained from the experiment. Therefore, the cutting order should be chosen appropriately to when the strands get detensioned.

A Study of the Autonomous Driving Path Planning for Concrete Pavement Cutting Operation (콘크리트 도로 표면절삭 작업을 위한 자율주행 진로계획 수립방안)

  • Moon, Sung-Woo;Seo, Jong-Won;Yang, Byong-Soo;Lee, Won-Sik
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.929-933
    • /
    • 2007
  • Concrete Pavement Cutting Operation have Labor-intensive features. And Cutting Operation quality and productivity is influenced by operator's experience. Moreover Workers have risk of safety concerns. Therefore we need Concrete Pavement Cutting Operation automation system and system support software development on the economics. First of all we have to develop driving Path Planning for Concrete Pavement Cutting automation system. If result of Path Planning connect with automation system, Weak points is a complement to the existing Path Planning and we can obtain effective automation system. Consequently this paper suggest method of Autonomous Driving Path Planning for Concrete Pavement Cutting Operation And the Path Planning system application.

  • PDF

Long-term Monitoring of Expansion of Cement Concrete Pavement Affected by Alkali-Aggregate Reaction (알칼리-골재 반응에 의한 콘크리트 포장 팽창 장기 모니터링)

  • Hong, Seung-Ho;Shim, Young-Hwan
    • International Journal of Highway Engineering
    • /
    • v.17 no.2
    • /
    • pp.13-20
    • /
    • 2015
  • PURPOSES: This paper describes the expansion caused by the alkali-aggregate reaction (AAR) in concrete pavement currently in service. It also discusses the effects of joints installed to release the stress induced by the AAR expansion. METHODS: The expansion effect on concrete pavement was verified by a visual inspection and long-term measurement of the joint width of a cut-section. The behaviors of 16 newly installed joints were monitored as part of the investigation and long-term monitoring was carried out for three years after cutting. RESULTS: The behavior of a bridge was affected when AAR occurred in the connected pavement. The newly installed joints shrank in the longitudinal direction of the bridge after cutting. The width of the joints decreased over the six months after cutting. A large portion of the joint width (8.5cm) was found to have closed nine months after cutting. It had ultimately shrunk by about 92 percent when the final measurement was taken. CONCLUSIONS : The expansion of the pavement due to AAR was quantitatively described by visual inspection and the long-term monitoring of the newly cut joints. However, the width of the new joints decreased over the six to nine months after cutting. Additional research should be conducted to determine a means of controlling the expansion due to AAR in the pavement.

Cutting of Concrete Block Using Detonating Cords (도폭선을 이용한 콘크리트 블록 절단 연구)

  • Kim, Jung-Gyu;Kim, Jong-Gwan
    • Explosives and Blasting
    • /
    • v.37 no.4
    • /
    • pp.17-25
    • /
    • 2019
  • The method to remove the head of the cast-in-place pile using the detonating cord and horizontal separation plate was proposed in this paper. Plain concrete block was fabricated. Through the blasting test of the concrete block, the charge weight and the burden required for cutting the pile head were identified. The degree of damage of concrete blocks after cutting the head was checked using AUTODYN 2D. As a result of the experiment, it was found that the concrete block was cut using the 10 g/m detonating cord and horizontal separation plate, and the directional cutting of the block using the horizontal separation plate and the block damage caused by the detonating cord were reduced.

Development of the Pushing Type Cutting Device to Dismantle Concrete Structure for Decommissioning of Nuclear Power Plant (원전해체 시 콘크리트 구조물 절단을 위한 밀기형 절단장치 개발)

  • Lee, Bong-Jae;Kwon, Yong-Kyu;Hong, Chang-Dong;Lee, Dong-Won;Min, Kyong-Nam
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.1
    • /
    • pp.103-111
    • /
    • 2020
  • Pulling-type cutting devices, which use a diamond wire saw, have been used generally for cutting concrete structures. In this study, a pushing-type cutting device with a collection cover was developed by overcoming the disadvantages of pulling-type devices. In this device, dry or liquid methods can be selected to cool frictional heat. Operation and leakage tests of the dust generated during the dismantling of a concrete structure were carried out, confirming the suitable operation of the fabricated cutting device; the leakage rate was approximately 1.7%. For a conservative evaluation, the internal dose of workers was estimated in dismantling the core center part of biological shield concrete with a specific activity of 99.5 Bq·g-1. The committed effective dose per worker was 0.25 mSv. The developed cutting device contributed to reducing radioactive concrete waste and minimizing worker exposure due to its easy installation. Therefore, it can be utilized as a cutting apparatus for dismantling not only reinforced concrete structures but also radioactive biological shield concrete in nuclear power plant decommissioning efforts.

Safety Analysis of Concrete Treatment Workers in Decommissioning of Nuclear Power Plant

  • Hwang, Young Hwan;Kim, Si Young;Lee, Mi-Hyun;Hong, Sang Beom;Kim, Cheon-Woo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.3
    • /
    • pp.349-356
    • /
    • 2022
  • Nuclear power plant decommissioning generates significant concrete waste, which is slightly contaminated, and expected to be classified as clearance concrete waste. Clearance concrete waste is generally crushed into rubble at the site or a satellite treatment facility for practical disposal purposes. During the process, workers are exposed to radiation from the nuclides in concrete waste. The treatment processes consist of concrete cutting/crushing, transportation, and loading/unloading. Workers' radiation exposure during the process was systematically studied. A shielding package comprising a cylindrical and hexahedron structure was considered to reduce workers' radiation exposure, and improved the treatment process's efficiency. The shielding package's effect on workers' radiation exposure during the cutting and crushing process was also studied. The calculated annual radiation exposure of concrete treatment workers was below 1 mSv, which is the annual radiation exposure limit for members of the public. It was also found that workers involved in cutting and crushing were exposed the most.