• Title/Summary/Keyword: Concrete breakout capacity

Search Result 16, Processing Time 0.018 seconds

Static behaviour of bolted shear connectors with mechanical coupler embedded in concrete

  • Milosavljevic, Branko;Milicevic, Ivan;Pavlovic, Marko;Spremic, Milan
    • Steel and Composite Structures
    • /
    • v.29 no.2
    • /
    • pp.257-272
    • /
    • 2018
  • The research of shear connectors composed from mechanical couplers with rebar anchors, embedded in concrete, and steel bolts, as a mean of shear transfer in composite connections is presented in the paper. Specific issues related to this type of connections are local concrete pressure in the connector vicinity as well as the shear flow along the connector axis. The experimental research included 18 specimens, arranged in 5 series. Nonlinear numerical analyses using Abaqus software was conducted on corresponding FE models. Different failure modes were analysed, with emphasis on concrete edge failure and bolt shear failure. The influence of key parameters on the behaviour of shear connector was examined: (1) concrete compression strength, (2) bolt tensile strength and diameter and (3) concrete edge distance. It is concluded that bolted shear connectors with mechanical couplers have sufficient capacity to be used as shear connectors in composite structures and that their behaviour is similar to the behaviour of post installed anchors as well as other types of connectors anchored without the head.

An Experimental Study of Reinforced Concrete Beams with Closely-Spaced Headed Bars

  • Lam, Kah Mun;Kim, Woo-Suk;Van Zandt, Michael;Kang, Thomas H.K.
    • International Journal of Concrete Structures and Materials
    • /
    • v.5 no.2
    • /
    • pp.77-85
    • /
    • 2011
  • The use of headed bars as opposed to standard 90- or 180-degree hooked bars in beam ends, beam-column joints or other steel congested areas for anchorage and bond has become more favorable due to the fact that steel congestion is often created by large bend diameters or crossties. This research mainly focuses on evaluating the code provisions regarding the use of headed bars. Nine simply supported rectangular concrete beams with headed longitudinal reinforcement were tested under a four-point monotonic loading system. The design clear spacing, which varies from 1.5 to 4.25 times the bar diameter, was the only parameter for the experimental investigation. The test results showed that the closely-spaced headed bars were capable of developing to full yield strength without any severe brittle concrete breakout cone or pullout failure. Bond along the bar was not sufficient due to the early loss of concrete integrity. However, the headed bars were effective for anchorage with no excessive moment capacity reduction. This implies that the clear spacing of about 2 times the bar diameter for headed bars may be reasonable to ensure the development of specified yield strength of headed bars and corresponding member design strength.

An Performance Evaluation of Post-installed Anchor according to the Effective Embedment Length (유효묻힘깊이에 따른 후설치앵커의 인발성능평가)

  • Hur, Moo-Won;Chae, Kyoung-Hun;An, Yeong Seung;Hur, Moo-Won
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.26 no.4
    • /
    • pp.19-25
    • /
    • 2019
  • Concrete wedge anchor is one of structural components to transfer load of an object attached to a primary structure. Recently, as retrofitting concrete structure is becoming a main issue, mechanical capacity of the anchor should be secured enough. In spite of the structural safety of Cast-in-place anchor, Post-installed anchor is more widely used with ease of placement or change of construction method. However, the post-installed anchors domestically produced have excessive coefficient of variation over 15% of ultimate tensile strength, which yields deteriorated quality in tensile strength. In this research, tensile strength test of anchors, which have improved sleeve and header and produced by a domestic company, was conducted for two variables, concrete strength and effective embedment depth. As a result, enough coefficients of variations were secured in all specimens. Also, in comparison to foreign products, the domestic ones have equal or higher performance.

Dynamic shear strength of unreinforced and Hairpin-reinforced cast-in-place anchors using shaking table tests

  • Kim, Dong Hyun;Park, Yong Myung;Kang, Choong Hyun;Lee, Jong Han
    • Structural Engineering and Mechanics
    • /
    • v.58 no.1
    • /
    • pp.39-58
    • /
    • 2016
  • Since the publication of ACI 318-02, the concrete capacity design (CCD) method has been used to determine the resistance of unreinforced concrete anchors. The regulation of steel-reinforced anchors was proposed in ACI 318-08. Until ACI 318-08, the shear resistance of concrete breakout for an unreinforced anchor during an earthquake was reduced to 75% of the static shear strength, but this reduction has been eliminated since ACI 318-11. In addition, the resistance of a hairpin-reinforced anchor was calculated using only the strength of the steel, and a regulation on the dynamic strength was not given for reinforced anchors. In this study, shaking table tests were performed to evaluate the dynamic shear strength of unreinforced and hairpin-reinforced cast-in-place (CIP) anchors during earthquakes. The anchors used in this study were 30 mm in diameter, with edge distances of 150 mm and embedment depths of 240 mm. The diameter of the hairpin steel was 10 mm. Shaking table tests were carried out on two specimens using the artificial earthquake, based on the United States Nuclear Regulatory Commission (US NRC)'s Regulatory Guide 1.60, and the Northridge earthquake. The experimental results were compared to the current ACI 318 and ETAG 001 design codes.

Seismic Behavior Evaluation of Embedded Kagome Damping Device (콘크리트에 매립된 카고메 감쇠시스템의 내진거동평가)

  • Hur, Moo-Won;Lee, Sang-Hyun;Kim, Jong-Ho;Hwang, Jae-Seung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.2
    • /
    • pp.84-91
    • /
    • 2019
  • Recently, there has been a tendency to improve seismic performance of building structure by installing a steel hysteretic damping device which is economically efficient and easy to install and maintain. However, for a reinforced concrete building, a set of complicated connecting hardware and braces to fix the steel hysteretic damping device yields deteriorated reliability in damping performance. Therefore, this study presents a method of directly embedding a Kagome damper, which was investigated in previous researches, into a concrete structure without additional connecting hardware. Moreover, in this study, a series of experiments conducted to provide a basis of the Kagome damper by confirming the seismic behavior for various embedded lengths. As a result, in a group of the embedded length of $1.0l_d$, the dampers were pulled out, while concrete breakout occurs. In a group of $2.0l_d$, neither pull-out nor concrete breakout occurred, while the dampers show stable behavior. Moreover, the buried length of $2.0l_d$ has 1.3 times better energy dissipation capacity. The system presented in this study can reduce the cost and period for installing, omitting making additional hardware.

Development of a retrofit anchor system for remodeling of building exteriors

  • Yeun, Kyu Won;Hong, Ki Nam;Kim, Jong
    • Structural Engineering and Mechanics
    • /
    • v.44 no.6
    • /
    • pp.839-856
    • /
    • 2012
  • To enable remodeling of the exterior of buildings more convenient, such finishing materials as curtain walls, metal panels, concrete panels or dry stones need to be easily detached. In this respect, this study proposed a new design of the slab for the purposes. In the new design, the sides of the slab were properly modified, and the capabilities of anchors fixed in the modified slab were experimentally tested. In details, a number of concrete specimens with different sizes and compressive strengths were prepared, and the effect of anchors with different diameters and embedment depths applied in the concrete specimens were tested. The test results of the maximum capacities of the anchors were compared with the number of current design codes and the stress distribution was identified. This study found that the embedment depth specified in the current design code (ACI318-08) should be revised to be more than 1.5 times the edge distance. However, with the steel sheet reinforcement, the experiment acquired higher tensile strength than the design code proposed. In addition, for two types of specimens in the tensile strength experiment, the current design code (ACI 318-08) is overestimated for the anchor depth of 75 mm. This study demonstrated that the ideal breakout failure was attainable for the side slot details of a slab with more than 180 mm of a slab thickness and less than 75 mm of an anchor embedment depth. It is expected that these details of the modified slab can be specified in the upgraded construction design codes.