• Title/Summary/Keyword: Concrete aggregates

Search Result 995, Processing Time 0.025 seconds

Performance of self-compacting concrete made with coarse and fine recycled concrete aggregates and ground granulated blast-furnace slag

  • Djelloul, Omar Kouider;Menadi, Belkacem;Wardeh, George;Kenai, Said
    • Advances in concrete construction
    • /
    • v.6 no.2
    • /
    • pp.103-121
    • /
    • 2018
  • This paper reports the effects of coarse and fine recycled concrete aggregates (RCA) on fresh and hardened properties of self-compacting concrete (SCC) containing ground granulated blast-furnace slag (GGBFS) as cement replacement. For this purpose, three SCC mixes groups, were produced at a constant water to binder ratio of 0.38. Both fine and coarse recycled aggregates were used as natural aggregates (NA) replacement at different substitution levels of 0%, 25%, 50%, 75% and 100% by volume for each mix group. Each group, included 0, 15% or 30% GGBFS as Portland cement replacement by weight. The SCC properties investigated were self-compactability parameters (i.e., slump flow, T500 time, V-funnel flow time, L-box passing ability and sieve stability), compressive strength, capillary water absorption and water penetration depth. The results show that the combined use of RCA with GGBFS had a significant effect on fresh and hardened SCC mixes. The addition of both fine and coarse recycled aggregates as a substitution up to 50% of natural aggregates enhance the workability of SCC mixes, whereas the addition from 50 to 100% decreases the workability, whatever the slag content used as cement replacement. An enhancement of workability of SCC mixes with recycled aggregates was noticed as increasing GGBFS from 0 to 30%. RCA content of 25% to 50% as NA replacement and cement replacement of 15% GGBFS seems to be the optimum level to produce satisfactory SCC without any bleeding or segregation. Furthermore, the addition of slag to recycled concrete aggregates of SCC mixes reduces strength losses at the long term (56 and 90 days). However, a decrease in the capillary water absorption and water permeability depth was noticed, when using RCA mixes with slag.

Compressive Strength of Concrete due to Moisture Conditions of Recycled Coarse Aggregates and Curing Conditions (순환 굵은 골재의 함수상태와 양생조건에 따른 콘크리트의 압축강도)

  • Moon, Kyoungtae;Park, Sangyeol;Kim, Seungeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.4
    • /
    • pp.485-492
    • /
    • 2019
  • In this study, the effect of moisture conditions of recycled coarse aggregates on the compressive strength of concrete was evaluated with the water/binder ratios and the curing conditions. The saturated recycled aggregates seemed to have the negative effect on the strength development of concrete. This is the because of the decrease in bond strength between aggregate and cement paste due to the increase of surface water according to the high absorption of recycled aggregates. The effect of types and moisture conditions of aggregates according to the change of water/binder ratio was similar. However, the curing conditions had a significant effect on the compressive strength of the concrete with the different types of aggregates. In the case of curing in air, the recycled aggregates with high absorption reduced the moisture required for hydration and increased the rate of vaporizing, and these result in interfering strength development. The moisture conditions of the recycled aggregates have a considerable effect on the compressive strength of the concrete, and it is necessary to control the moisture conditions of aggregates in the production of concrete with recycled coarse aggregate. And the control of the curing condition is very important for the concrete with recycled aggregate.

Estimation of Compressive Strength of Concrete Using Whinstone Aggregates by Ultrasonic Non-destructive test (초음파법 비파괴 시험에 의한 현무암 골재를 사용한 콘크리트의 강도평가)

  • 김상우;이백수;이승석;류현기;김무한;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.389-392
    • /
    • 2000
  • This paper provide nondestructive test method of concrete by applying ultrasonic pulse test. Whinstone aggregates produced from cheju island are used for coarse aggregate. The purpose of this study is to contribute to the standardization of nondestructive test for estimating compressive strength of concrete manufactured from cheju island. According to experimental results, it is found that compressive strength of Whinstone aggregates concrete shows higher than that of granite stone concrete, whereas ultrasonic pulse of Whinstone aggregates concrete shows lower that of granite concrete Based on the results of this study, estimation formula compressive strength by ultrasonic pulse test are presented in Fig 2.

  • PDF

Successive recycled coarse aggregate effect on mechanical behavior and microstructural characteristics of concrete

  • Ashish, Deepankar K.;Saini, Preeti
    • Computers and Concrete
    • /
    • v.21 no.1
    • /
    • pp.39-46
    • /
    • 2018
  • With the increase in industrialization and urbanization, growing demand has enhanced rate of new constructions and old demolitions. To avoid serious environmental impacts and hazards recycled concrete aggregates (RCA) is being adopted in all over the world. This paper investigates successive recycled coarse aggregates (SRCA) in which old concrete made with RCA in form of concrete cubes was used. The cubes were crushed to prepare new concrete using aggregates from crushing of old concrete, used as SRCA. The mechanical behavior of concrete was determined containing SRCA; the properties of SRCA were evaluated and then compared with natural aggregates (NA). Replacement of NA with SRCA in ratio upto 100% by weight was studied for workability, mechanical properties and microstructural analysis. It was observed that with the increase in replacement ratio workability and compressive strength decreased but in acceptable limits so SRCA can be used in low strength concretes rather than high strength concrete structures.

Compressive Strength Properties Surface Coating Lightweight Aggregate ITZ using Inorganic Materials (무기 재료를 이용한 표면코팅 경량골재 계면 압축강도 특성)

  • Kim, Ho-Jin;Jeong, Su-Mi;Pyeon, Myeong-Jang;Kim, Ju-Sung;Park, Sun-Gyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.109-110
    • /
    • 2022
  • Recently, it tend to increase the high-rise and large-scale of buildings and the developtment of construction technology can to be applied reinforced concrete structures to high-rise buildings. However, when a high-rise buildings is constructed with reinforced concrete, it has a disadvantage that buildings weight increases. In order to resolve the weight of reinforced concrete structures, various types of lightweight aggregates become development and research. Although lightweight aggregates can be reduced the weight of concrete, the strength of ITZ(Interfacial Transition Zone) is lowered due to its less strength than natural aggregates. In this study, an experimental study was conducted to coat the surface of lightweight aggregates with GGBFS(ground granulated blast furnace slag) to improve the strength of cement matrix mixed with lightweight aggregates. Result of this experimental study shows that the compressive strnegth of the surface coating lightweight aggregates was higher than general lightweight aggregates. Also, it was considered that this is because the pore at the ITZ of the surface-coated lightweight aggregates mixed cement matrix are filled with GGBFS fine particle.

  • PDF

Proposals of Integration of Korea Industrial Standard for Aggregates for Efficient Quality Control of Concrete Aggregate (콘크리트용 골재 품질 관리 효율화를 위한 골재 관련 KS 표준 통합 방안)

  • Lee, Jun-Seok;Han, Min-Cheol
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.125-135
    • /
    • 2016
  • The objective of this paper is to provide integrated Korea industrial standards(KS) for concrete aggregates, which has been separately provided with ten kinds of KS, in order to improve the way of quality management of concrete aggregate and to prevent distribution of unsuitable aggregates. For the sequences of the paper, typical foreign standards related to concrete aggregates including ASTM for US, EN for EU, JIS for Japan are reviewed and compared to provide necessities and feasibilities of the paper. Based on the analysis above results, existing KS for concrete aggregates, which have been separately provided with ten kinds being lack of correlation between each KS is integrated to KS F 2526 "Aggregates for concrete" in this paper. By doing this, in terms of terminology, the expression of the aggregate, which has been currently classified into specified terminologies of aggregates depending on sources, manufacturing methods of each aggregates, is able to be integrated to single expression of the aggregate for concrete. It is believed that integrated KS presented herein provides more desirable way in terms of its better accessibility, easier revision and closer connection between each aggregate kinds.

Engineering Characteristics of Permeability Concrete for Road Pavement by Recycled Aggregates (순환골재 사용에 따른 도로포장용 투수성 콘크리트의 공학적 특성)

  • Kim, Young-Chul;Son, Ho-Jung;Lee, Yong-Gil;Kwon, Choon-Woo;Kong, Tae-Woong;Ryu, Seong-Lyong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.229-231
    • /
    • 2013
  • In this study, the qualitative characteristics of the permeability concrete by the changes in the grading of the recycled aggregates were analyzed and its results are as follows. First, the compressive strength represented the low range of strengths comparing with the typical concrete, and the high compressive strengths were represented as the aggregates with small grading of 2.5mm were used. The bending strengths did not satisfy the targeted range, and the permeability coefficient represented to be good when the aggregates with single grading greater than 5.0mm and the mixed aggregates of 5.0mm with 10.0mm.

  • PDF

The Effect of Combined Aggregates on Fluidity of the High Fluid Concrete Containing GGBFS (고로슬래그미분말을 혼입한 고유동콘크리트에서 골재조합이 콘크리트 유동성상에 미치는 영향에 관한 실험 연구)

  • Kim, Jae-Hun;Yoon, Sang-Chun;Jee, Nam-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.3 no.4
    • /
    • pp.79-86
    • /
    • 2003
  • The purpose of study is to offer base data for high fluid concrete mix property, as grasp effect of aggregate to reach much more effect for producing high fluid concrete. For this study, there are three types of combined aggregates, river sand + river aggregate(type A), river sand + crusted aggregate(type B), washed sea sand + crushed aggregate(type C) and take a factor, water-contents, water-binder ratio and S/a. And so, we had following conclusion, resulting application-ability of high fluid mortar by K-slump tester to use a handy consistency measuring instrument. And so, we had following conclusion, resulting application-ability of high fluid concrete by K-slump tester to use a handy consistency measuring instrument. 1) In cafe of regular water binder ratio, high fluid concrete suffered much effect of combined aggregates and water binder ratio. Range of water binder ratio by combined aggregates is w/b 0.4 downward(type A and B), w/b 0.35 downward(type C). 2) Water contents to need for producing high fluid concrete is minimum 170kg/$\textrm{m}^3$ without regard to combined aggregates. 3) The effect of S/a on high fluid concrete by combined aggregates is approximately S/a 50% (type A and B), s/a 50-55% (type C). 4) Consistency measuring of high fluid concrete by K-slump tester is possible and first indication value, high fluid concrete can be produced, is 6~10.5cm.

The Spalling Properties of High-Performance Concrete with the Kinds of Aggregates and Polypropylene Fiber Contents (골재종류 및 폴리프로필렌 섬유 혼입률 변화에 따른 고성능콘리트의 폭열 성상)

  • 이병렬;황인성;윤기원;양성환;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.76-79
    • /
    • 1999
  • The purpose of this study is to investigate the spalling properties of high-performance concrete with the kinds of aggregates and polypropylene(below PP) fiber contents. According to the experimental results, concrete contained no PP fiber take place in the form of the surface spalling and the failure of specimens after fire test regardless of the kinds of aggregates. Concrete contained more than 0.05% of PP fiber with the kinds of aggregates does not take place the spalling. Concrete using basalt has better performance in spalling resistance that concrete using granite and limestone. It is found that residual compressive strength has 50~60% of their original strength. Although specimens after exposed at high temperature are cured at water for 28days, they do not recover their original strength.

  • PDF

Influence of the Type of Fine Aggregate on Concrete Properties (잔골재 종류가 콘크리트의 물성에 미치는 영향)

  • Koh, Kyung-Taek;Ryu, Gum-Sung;Yoon, Gi-Won;Han, Cheon-Goo;Lee, Jang-Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.4 s.94
    • /
    • pp.459-467
    • /
    • 2006
  • Recently, interest grew on the quality of aggregates following the diminution of primary resources from river as to grow construction demand and the low grade of nature sand like sea sand. Following, need is to diversify the supply sources of fine aggregates which are excessively relying on sea sand and urgency is to find as soon as possible aggregate resources that can substitute sea sand. On the other hand, various fine aggregates are utilized to produce concrete in the domestic construction fields. However, few studies have been systematically investigated on the effects of such fine aggregates on concrete properties. Therefore, this study examined the effects of comparatively widely used fine aggregates in the domestic construction fields on the quality of concrete through the analysis of the effects of such fine aggregates on the physical properties of fresh concrete and strength of hardened concrete. Results revealed that crushed sand degraded the fluidity and air entraining of concrete compared to natural aggregates like sea sand and river sand. Especially, the use of crushed sand exhibiting bad grain shape and grade was larger adverse effect on the physical properties of concrete. The type of fine aggregates appeared to have negligible influence on the strength for W/C of 55%, 45% while crushed sand decreased the strength for W/C of 35% compared to natural aggregates. It analyzed that the combination of crushed sand exhibiting bad grain shape and grade with natural aggregates improved the characteristics of fresh concrete and had negligible influence on the strength.