• 제목/요약/키워드: Concrete Work

검색결과 1,570건 처리시간 0.029초

전자기장을 활용한 초고층 건축물 콘크리트 압송기술개발 (Development of concrete pumping technology for construction of high-rise building using electromagnetic field)

  • 김우재;권승희
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2018년도 춘계 학술논문 발표대회
    • /
    • pp.4-5
    • /
    • 2018
  • Recently, high-strength concrete used for shortening the construction time of high-rise building construction, Concrete pumping technology is emerging as the core technology of high-rise buildings. In this paper, we have started to study the use of electromagnetic field as a method to increase the efficiency of the lubricating layer between the inside of the pipe and concrete, which has been established as the most important factor determining the pumping performance. The pumping performance improvement effect of concrete strength was verified and basic research was carried out to utilize it as a method to increase the efficiency of pumping in field application. In the related work, the effect of the electromagnetic field was verified by conducting a mock-up performance evaluation (horizontal 300 m) of the pumping force by the concrete strength.

  • PDF

Influence of flexural loading on chloride ingress in concrete subjected to cyclic drying-wetting condition

  • Ye, Hailong;Fu, Chuanqing;Jin, Nanguo;Jin, Xianyu
    • Computers and Concrete
    • /
    • 제15권2호
    • /
    • pp.183-198
    • /
    • 2015
  • Chloride ingress implies a complex interaction between physical and chemical process, in which heat, moisture and chloride ions transport through concrete cover. Meanwhile, reinforced concrete structure itself undergoes evolution due to variation in temperature, relative humidity and creep effects, which can potentially change the deformation and trigger some micro-cracks in concrete. In addition, all of these process show time-dependent performance with complex interaction between structures and environments. In the present work, a time-dependent behavior of chloride transport in reinforced concrete beam subjected to flexural load is proposed based on the well-known section fiber model. The strain state varies because of stress redistribution caused by the interaction between environment and structure, mainly dominated by thermal stresses and shrinkage stress and creep. Finally, in order to clear the influence of strain state on the chloride diffusivity, experiment test were carried out and a power function used to describe this influence is proposed.

Behaviour of fiber reinforced concrete beams with spliced tension steel reinforcement

  • Safan, Mohamed A.
    • Structural Engineering and Mechanics
    • /
    • 제43권5호
    • /
    • pp.623-636
    • /
    • 2012
  • The aim of the current work is to describe the flexural behaviour of simply supported concrete beams with tension reinforcement spliced at mid-span. The parameters included in the study were the type of the concrete, the splice length and the configuration of the hooked splice. Fifteen beams were cast using an ordinary concrete mix and two fiber reinforced concrete mixes incorporating steel and polypropylene fibers. Each concrete mix was used to cast five beams with continuous, spliced and hooked spliced tension steel bars. A test beam was reinforced on the tension side with two 12 mm bars and the splice length was 20 and 40 times the bar diameter. The hooked bars were spliced along 20 times the bar diameter and provided with 45-degree and 90-degree hooks. The test results in terms of cracking and ultimate loads, cracking patterns, ductility, and failure modes are reported. The results demonstrated the consequences due to short splices and the improvement in the structural behaviour due to the use of hooks and the confinement provided by the steel and polypropylene fibers.

콘크리트 배합설계의 모형화 (Moldeling of Concrete Mix Proportioning)

  • 곽계환;박종건;김진철
    • 한국농공학회지
    • /
    • 제33권2호
    • /
    • pp.73-81
    • /
    • 1991
  • This work is a study on modeling of concrete mix proportioning Although concrete in one of the most important materials for construction, its production system is not so well organized in comparison with other materials. The heterogeneous nature of concrete and concrete materials create numerous variables which influence the properties of fresh and hardened concrete. The relationships between the different variables are formulated into equations. The regression analysis was done by using the computer program of statistical analysis for engineers. A computer program was written for proportioning the different ingredients of concrete using the derived equations.

  • PDF

Fuzzy inference based cover thickness estimation of reinforced concrete structure quantitatively considering salty environment impact

  • Do, Jeong-Yun
    • Computers and Concrete
    • /
    • 제3권2_3호
    • /
    • pp.145-161
    • /
    • 2006
  • This article involves architecting prototype-fuzzy expert system for designing the nominal cover thickness by means of fuzzy inference for quantitatively representing the environment affecting factor to reinforced concrete in chloride-induced corrosion environment. In this work, nominal cover thickness to reinforcement in concrete was determined by the sum of minimum cover thickness and tolerance to that defined from skill level, constructability and the significance of member. Several variables defining the quality of concrete and environment affecting factor (EAF) including relative humidity, temperature, cyclic wet and dry, and the distance from coast were treated as fuzzy variables. To qualify EAF the environment conditions of cycle degree of wet-dry, relative humidity, distance from coast and temperature were used as input variables. To determine the nominal cover thickness a qualified EAF, concrete grade, and watercement ratio were used. The membership functions of each fuzzy variable were generated from the engineering knowledge and intuition based on some references as well as some international codes of practice.

리브라스 거푸집의 활용 방안에 관한 실험적 연구 (An Fundamental Study on the Application of Lib-lath form)

  • 남정민;김우상;박무영;전판근;김성식;정상진
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.785-788
    • /
    • 2004
  • In order for concrete as a basic material constituting reinforced concrete structure to meet the required performance, it is necessary to satisfy various requirements in concrete construction. Among them, form work has significant effects not only on the process of molding fresh concrete but also on the quality and performance of hardened concrete. Recently, the decrease and aging of form workers is becoming a great problem in the construction industry and, as a result, it is required to rationalize form works and reduce labor costs for employing form workers.

  • PDF

Lattice discrete particle modeling of compressive failure in hollow concrete blocks

  • Javidan, Fatemeh;Shahbeyk, Sharif;Safarnejad, Mohammad
    • Computers and Concrete
    • /
    • 제13권4호
    • /
    • pp.437-456
    • /
    • 2014
  • This work incorporates newly introduced Lattice Discrete Particle Model (LDPM) to assess the failure mechanism and strength of hollow concrete blocks. Alongside, a method for the graphical representation of cracked surfaces in the LDPM is outlined. A slightly modified calibration procedure is also suggested and used to estimate required model parameters for a tested concrete sample. Next, the model is verified for a compressively loaded hollow block made of the very same concrete. Finally, four geometries commonly used in the production of hollow concrete blocks are selected, numerically simulated, and their failure properties are explored under concentric and eccentric compressions.

콘크리트 배합설계 프로그램 개발 연구 (The Development of a Computer Program for Concrete Mix Design)

  • 최재진
    • 한국산학기술학회논문지
    • /
    • 제1권1호
    • /
    • pp.63-72
    • /
    • 2000
  • 콘크리트 배합설계의 목적은 사용 조건에 따라 요구되는 성능을 만족시키는 콘크리트를 만들기 위하여 가장 경제적이며 실용적인 재료의 혼합비율을 결정하는 것이다. 이러한 목적을 달성하기 위해서는 배합설계에 대한 깊은 이해가 필요한 데 실제는 배합설계가 매우 어렵고 복잡한 일로 인식되어 있다. 따라서 본 연구에서는 배합설계이론을 고찰하고 비쥬얼 베이직으로 배합설계 프로그램을 작성함으로써 콘크리트 공학의 초보자도 이 프로그램을 이용하여 쉽게 배합설계를 할 수 있도록 하였다.

  • PDF

Prediction of the compressive strength of fly ash geopolymer concrete using gene expression programming

  • Alkroosh, Iyad S.;Sarker, Prabir K.
    • Computers and Concrete
    • /
    • 제24권4호
    • /
    • pp.295-302
    • /
    • 2019
  • Evolutionary algorithms based on conventional statistical methods such as regression and classification have been widely used in data mining applications. This work involves application of gene expression programming (GEP) for predicting compressive strength of fly ash geopolymer concrete, which is gaining increasing interest as an environmentally friendly alternative of Portland cement concrete. Based on 56 test results from the existing literature, a model was obtained relating the compressive strength of fly ash geopolymer concrete with the significantly influencing mix design parameters. The predictions of the model in training and validation were evaluated. The coefficient of determination ($R^2$), mean (${\mu}$) and standard deviation (${\sigma}$) were 0.89, 1.0 and 0.12 respectively, for the training set, and 0.89, 0.99 and 0.13 respectively, for the validation set. The error of prediction by the model was also evaluated and found to be very low. This indicates that the predictions of GEP model are in close agreement with the experimental results suggesting this as a promising method for compressive strength prediction of fly ash geopolymer concrete.

Strength of prestressed concrete beams in torsion

  • Karayannis, Chris G.;Chalioris, Constantin E.
    • Structural Engineering and Mechanics
    • /
    • 제10권2호
    • /
    • pp.165-180
    • /
    • 2000
  • An analytical model with tension softening for the prediction of the capacity of prestressed concrete beams under pure torsion and under torsion combined with shear and flexure is introduced. The proposed approach employs bilinear stress-strain relationship with post cracking tension softening branch for the concrete in tension and special failure criteria for biaxial stress states. Further, for the solution of the governing equations a special numerical scheme is adopted which can be applied to elements with practically any cross-section since it utilizes a numerical mapping. The proposed method is mainly applied to plain prestressed concrete elements, but is also applicable to prestressed concrete beams with light transverse reinforcement. The aim of the present work is twofold; first, the validation of the approach by comparison between experimental results and analytical predictions and second, a parametrical study of the influence of concentric and eccentric prestressing on the torsional capacity of concrete elements and the interaction between torsion and shear for various levels of prestressing. The results of this investigation presented in the form of interaction curves, are compared to experimental results and code provisions.