• Title/Summary/Keyword: Concrete Layer Resistivity

Search Result 4, Processing Time 0.031 seconds

A Study on the Evaluation of the Corrosive Environment of Reinforcement Bar by Concrete Layer Resistivity (콘크리트 층간비저항에 의한 철근의 부식환경 평가에 관한 연구)

  • Lim, Young-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.43-44
    • /
    • 2012
  • Deterioration factors such as CO2 and chloride ions cause steel corrosion in RC structures. The diffusion of these factors depends on the water content in concrete. To examine the moisture condition of concrete, this research considers the availability of the steel effect ratio, which is calculated by Resistivity Estimation Model (REM). It is concluded that the steel effect ratio is expected to be available as a quantitative evaluation method in the assessment of concrete layer resistivity.

  • PDF

Impact of aggressive exposure conditions on sustainable durability, strength development and chloride diffusivity of high performance concrete

  • Al-Bahar, Suad;Husain, A.
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.1
    • /
    • pp.35-48
    • /
    • 2015
  • The main objective of this study is to evaluate the long-term performance of various concrete composites in natural marine environment prevailing in the Gulf region. Durability assessment studies of such nature are usually carried out under aggressive environments that constitute seawater, chloride and sulfate laden soils and wind, and groundwater conditions. These studies are very vital for sustainable development of marine and off shore reinforced concrete structures of industrial design such as petroleum installations. First round of testing and evaluation, which is presented in this paper, were performed by standard tests under laboratory conditions. Laboratory results presented in this paper will be corroborated with test outcome of ongoing three years field exposure conditions. The field study will include different parameters of investigation for high performance concrete including corrosion inhibitors, type of reinforcement, natural and industrial pozzolanic additives, water to cement ratio, water type, cover thickness, curing conditions, and concrete coatings. Like the laboratory specimens, samples in the field will be monitored for corrosion induced deterioration signs and for any signs of failureover initial period ofthree years. In this paper, laboratory results pertaining to microsilica (SF), ground granulated blast furnace slag (GGBS), epoxy coated rebars and calcium nitrite corrosion inhibitor are very conclusive. Results affirmed that the supplementary cementing materials such as GGBS and SF significantly impacted and enhanced concrete resistivity to chloride ions penetration and hence decrease the corrosion activities on steel bars protected by such concretes. As for epoxy coated rebars applications under high chloride laden conditions, results showed great concern to integrity of the epoxy coating layer on the bar and its stability. On the other hand corrosion inhibiting admixtures such as calcium nitrite proved to be more effective when used in combination with the pozzolanic additives such as GGBS and microsilica.

Potential Distribution near Concrete Pole According to the position of Ground Rod (접지봉 설치에 따른 전주 주변의 전위분포)

  • Lee, B.H.;Jung, H.U.;Choi, C.H.;Cho, S.C.;Baek, Y.H.;Lee, K.S.;Ahn, C.H.
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.342-346
    • /
    • 2006
  • This paper describes ground surface potential rises and touch voltage. The more soil resistivity of upper layer is lower, the more ground surface potential rise is increased. Ground surface potential rise is increased as the buried depth of ground rod in lowered. Ground surface potential rises were measured in the test site and compared with results by CDEGS program. Touch voltages according to the separation distance of ground rod were measured in four directions. Touch voltages were remarkably changed by separation distance and contact position.

  • PDF

Proper Monitoring Methods for Safety Management of Tailings Dam (광물찌꺼기적치장의 안전관리를 위한 적정 모니터링 방안 연구)

  • Jung, Myung Chae;Kim, Jeong Wook;Hwang, In-ho;Yang, In Jae;Park, Jay Hyun;Park, Ju Hyun;Kim, Tae Youp
    • Journal of the Korean Society of Mineral and Energy Resources Engineers
    • /
    • v.55 no.6
    • /
    • pp.576-587
    • /
    • 2018
  • This study has focused on analysis factors affecting safety monitoring system at tailings sites, and the evaluation equipment to monitor the factors. Twenty sites at eighteen mines with unsafe conditions were selected to examine the equipment. There were three main factors influenced safety in the sites including surface erosion, piping, and slope instability. In detail, the surface erosion was divided into three sub-factors (planting, soil-topping layer, and tailings), piping into three sub-factors (liner, rain protection facility and leachate), and slop instability was also divided into three sub-factors (slop, concrete wall, and reinforcing wall). As results of in-field measurement, a CCTV was the most effective facility, and electrical resistivity survey, acoustic sensing, thermal liner sensor, structure inclinometer, rainfall meter, and flowmeter were also highly effective. According to applications of the facilities in the unstable tailings, structural defects were mainly found in the piping, which was the most important monitoring factor for safety management of tailings sites.