• Title/Summary/Keyword: Concrete Filled Tubular

Search Result 277, Processing Time 0.023 seconds

Composite action of notched circular CFT stub columns under axial compression

  • Ding, Fa-xing;Wen, Bing;Liu, Xue-mei;Wang, Hai-bo
    • Steel and Composite Structures
    • /
    • v.24 no.3
    • /
    • pp.309-322
    • /
    • 2017
  • This paper conducted both numerical and theoretical studies to investigate the composite action of notched circular concrete-filled steel tubular (CFT) stub columns under axial compression and established a theoretical method to predict their ultimate bearing capacity. 3D finite element (FE) analysis was conducted to simulate the composite action and the results were in good agreement with experimental results on circular CFT stub columns with differently oriented notches in steel tubes. Parametric study was conducted to understand the effects of different parameters on the mechanical behavior of circular CFT stub columns and also the composite action between the steel tube and the core concrete. Based on the results, a theoretical formula was proposed to calculate the ultimate bearing capacity of notched CFT stub columns under compression with consideration of the composite action between the steel tube and the core concrete.

Mechanical behavior of outer square inner circular concrete-filled dual steel tubular stub columns

  • Ding, Fa-xing;Wang, Wenjun;Liu, Xue-mei;Wang, Liping;Sun, Yi
    • Steel and Composite Structures
    • /
    • v.38 no.3
    • /
    • pp.305-317
    • /
    • 2021
  • The mechanical behavior of the outer square inner circular concrete-filled dual steel tubular (SCCFT) stub columns under axial compression is investigated by means of experimental research, numerical analysis and theoretical investigation. Parameters such as diameter ratio, concrete strength and steel ratio were discussed to identify their influence on the mechanical properties of SCCFT short columns on the basis of the experimental investigation of seven SCCFT short columns. By establishing a finite element model, nonlinear analysis was performed to discuss the longitudinal and transverse stress of the dual steel tubes. The longitudinal stress characteristics of the core and sandwich concrete were also analyzed. Furthermore, the failure sequence was illustrated and the reasonable cross-section composition of SCCFT stub column was proposed. A formula to predict the axial load capacity of SCCFT stub column was advanced and verified by the results from experiment and the finite element.

Degradation of buckling capacity of slender concrete-filled double skin steel tubular columns due to interface compliance

  • Cas, Bojan;Schnabl, Simon
    • Structural Engineering and Mechanics
    • /
    • v.82 no.5
    • /
    • pp.643-650
    • /
    • 2022
  • In this paper a novel mathematical model and its analytical solution of global buckling behaviour of slender elastic concrete-filled double-skin tubular (CFDST) columns with finite compliance between the steel tubes and a sandwiched concrete core is derived for the first time. The model is capable of investigating the influence of various basic parameters on critical buckling loads of CFDST columns. It is shown that the elastic buckling load of circular and slender CFDST columns is independent on longitudinal contact stiffness, but, on the other hand, it can be considerably dependent on circumferential contact stiffness. The increasing of the circumferential contact stiffness increases the critical buckling load. Furthermore, it is shown that analytical results can agree well with the experimental and numerical results if the calibrated values of circumferential contact stiffness are used in the calculations. Moreover, it is shown that the contact between the steel tubes and a sandwiched concrete core of tested large-scale CFDST columns used in the comparison is relatively weak. Finally, the proposed analytical results can be used as a benchmark solution.

Feasibility study for blind-bolted connections to concrete-filled circular steel tubular columns

  • Goldsworthy, H.M.;Gardner, A.P.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.4
    • /
    • pp.463-478
    • /
    • 2006
  • The design of structural frameworks for buildings is constantly evolving and is dependent on regional issues such as loading and constructability. One of the most promising recent developments for low to medium rise construction in terms of efficiency of construction, robustness and aesthetic appearance utilises concrete-filled steel tubular sections as the columns in a moment-resisting frame. These are coupled to rigid or semi-rigid connections to composite steel-concrete beams. This paper includes the results of a pilot experimental programme leading towards the development of economical, reliable connections that are easily constructed for this type of frame. The connections must provide the requisite strength, stiffness and ductility to suit gravity loading conditions as well as gravity combined with the governing lateral wind or earthquake loading. The aim is to develop connections that are stiffer, less expensive and easier to construct than those in current use. A proposed fabricated T-stub connection is to be used to connect the beam flanges and the column. These T-stubs are connected to the column using "blind bolts" with extensions, allowing installation from the outside of the tube. In general, the use of the extensions results in a dramatic increase in the strength and stiffness of the T-stub to column connection in tension, since the load is shared between membrane action in the tube wall and the anchorage of the bolts through the extensions into the concrete.

Strength of Axially Loaded Concrete-Filled Tubular Stub Column. (중심축하중을 받는 콘크리트충전 각형강관단주의 내력)

  • Kang, Chang-Hoon;Oh, Young-Suk;Moon, Tae-Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.3
    • /
    • pp.279-287
    • /
    • 2001
  • This paper presents an experimental and analytical study on the behavior of concrete-filled tubular stub columns concentrically loaded in compression to fail. Total eleven specimens were tested and test parameters are the depth-to-thickness ratios of steel tube and the ratio of concrete cylinder strength-to-yield stress of steel tube. Depth-to-thickness ratios of steel tube between 20.22

  • PDF

Behavior of circular concrete-filled steel tubular columns under pure torsion

  • Ding, Fa-xing;Fu, Qiang;Wen, Bing;Zhou, Qi-shi;Liu, Xue-mei
    • Steel and Composite Structures
    • /
    • v.26 no.4
    • /
    • pp.501-511
    • /
    • 2018
  • Concrete-filled steel tubular (CFT) columns are commonly used in engineering structures and always subjected to torsion in practice. This paper is thus devoted to investigate the mechanical behavior of circular CFT columns under pure torsion.3D finite element models based on reasonable material constitutive relation were established for analyzing the load-strain ($T-{\gamma}$) curves of circular CFT columns under pure torsion. The numerical simulation indicated that local bulking of the steel tube in CFT columns was prevented and the shear strength and ductility of the core concrete were significantly improved due to the confinement effect between the steel tube and the core concrete. Based on the results, formulas to predict the torsional ultimate bearing capacity of circular CFT columns were proposed with satisfactory correspondence with experimental results. Besides, formulas of composite shear stiffness and the overall process of the $T-{\gamma}$ relation of circular CFT columns under pure torsion were proposed.

Application of Composites to Construction Industry and Development of Concrete Filled Composite Compression Member (복합소재의 건설분야 응용현황과 콘크리트 합성압축부재의 개발)

  • 이성우;박신전
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.183-188
    • /
    • 1999
  • Due to many advantages of advanced composite materials, research on the application of composites to the construction industry is initiated. In this paper, fabrication methods efficient for infrastructures and application examples of each method are discussed. It also presents the structural characteristics of concrete filled glass fiber reinforced composite tubular member. Experimental results shows that strength and ductility of composite compression member is considerably increased due to concrete confinement action of composite surface.

  • PDF

Seismic Performance of In- Filled Steel-Concrete Composite Columns Using Fiber Analysis Method

  • Park, Jae-Young;Kim, Jin-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.427-430
    • /
    • 2005
  • The study for seismic characteristics of square concrete-filled steel tubular (CFT) columns is analytically conducted. For predicting the strength and ductility of CFT columns, fiber analysis technique is used. The analytical results show reasonable agreement with experiment results. The influence of the steel tube on the lateral response of CFT columns is studied for the evaluation of seismic performance.

  • PDF

Flexural Behavior of Concrete Filled Seismic Resistant Steel Tubular Columns Subjected to Axial and Cyclic Lateral Load (축력과 반복수평력을 받는 콘크리트 충전 내진 각형강관 기둥의 휨거동 특성)

  • Kim, Byung-Ho;Shim, Hyun-Ju;Choi, Byong-Jeong;Lee, Eun-Taik
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.3
    • /
    • pp.317-326
    • /
    • 2011
  • Today there is a growing range of applications for Concrete-Filled Steel Tube (CFT) member because of its superior performance. Ductility estimation test of concrete-filled seismic resistant steel tubular columns, subjected to axial and cyclic lateral load, was carried out in this study. Seismic resistant steel tubes are manufactured using SN400B plates by a two-seam welding at center of the column width for cold press-formed shape plates of two pieces. A total of eight specimens were manufactured and tested with the parameters of width-thickness ratio of steel tubular column, axial load ratio, and loading conditions to act axial and cyclic lateral load two dynamic actuators were used. From test results, flexural strength, deformation capacity, energy dissipation capacity, and ductility behavior of columns were analyzed.

Composite action of concrete-filled double circular steel tubular stub columns

  • Wang, Liping;Cao, Xing-xing;Ding, Fa-xing;Luo, Liang;Sun, Yi;Liu, Xue-mei;Su, Hui-lin
    • Steel and Composite Structures
    • /
    • v.29 no.1
    • /
    • pp.77-90
    • /
    • 2018
  • This paper presents a combined numerical, experimental, and theoretical study on the behavior of the concrete-filled double circular steel tubular (CFDT) stub columns under axial compressive loading. Four groups of stub column specimens were tested in this study to find out the effects of the concrete strength, steel ratio and diameter ratio on the mechanical behavior of CFDT stub columns. Nonlinear finite element (FE) models were also established to study the stresses of different components in the CFDT stub columns. The change of axial and transverse stresses in the internal and external steel tubes, as well as the change of axial stress in the concrete sandwich and concrete core, respectively, was thoroughly investigated for different CFDT stub columns with the same steel ratio. The influence of inner-to-outer diameter ratio and steel ratio on the ultimate bearing capacity of CFDT stub columns was identified, and a reasonable section configuration with proper inner-to-outer diameter ratio and steel ratio was proposed. Furthermore, a practical formula for predicting the ultimate bearing capacity was proposed based on the ultimate equilibrium principle. The predicted results showed satisfactory agreement with both experimental and numerical results, indicating that the proposed formula is applicable for design purposes.