Browse > Article
http://dx.doi.org/10.12989/scs.2017.24.3.309

Composite action of notched circular CFT stub columns under axial compression  

Ding, Fa-xing (School of Civil Engineering, Central South University)
Wen, Bing (School of Civil Engineering, Central South University)
Liu, Xue-mei (School of Civil Engineering and Built Environment, Queensland University of Technology)
Wang, Hai-bo (School of Civil Engineering, Central South University)
Publication Information
Steel and Composite Structures / v.24, no.3, 2017 , pp. 309-322 More about this Journal
Abstract
This paper conducted both numerical and theoretical studies to investigate the composite action of notched circular concrete-filled steel tubular (CFT) stub columns under axial compression and established a theoretical method to predict their ultimate bearing capacity. 3D finite element (FE) analysis was conducted to simulate the composite action and the results were in good agreement with experimental results on circular CFT stub columns with differently oriented notches in steel tubes. Parametric study was conducted to understand the effects of different parameters on the mechanical behavior of circular CFT stub columns and also the composite action between the steel tube and the core concrete. Based on the results, a theoretical formula was proposed to calculate the ultimate bearing capacity of notched CFT stub columns under compression with consideration of the composite action between the steel tube and the core concrete.
Keywords
circular concrete-filled steel tubular columns; notch; finite element analysis; ultimate bearing capacity; composite action;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Baltay, P. and Gjelsvik, A. (1990), "Coefficient of friction for steel on concrete at high normal stress", J. Mater. Civil Eng., 2(1), 46-49.   DOI
2 Bhandari, J., Khan, F. and Abbassi, R. (2015), "Modelling of pitting corrosion in marine and offshore steel structures - A technical review", Loss Prev. Proc., 37(9), 39-62.   DOI
3 Chang, X., Ru, Z. and Zhou, W. (2013a), "Study on concrete-filled stainless steel carbon steel tubular (CFSCT) stub columns under compression", Thin-Wall. Struct., 63(3), 125-133.   DOI
4 Chang, X., Fu, L., Zhao, H.B. and Zhang, Y.B. (2013b), "Behaviors of axially loaded circular concrete-filled steel tube (CFT) stub columns with notch in steel tubes", Thin-Wall. Struct., 73(4), 273-280.   DOI
5 Ding, F.X., Ying, X.Y. and Zhou, L.C. (2011a), "Unified calculation method and its application in determining the uniaxial mechanical properties of concrete", Front. Archit. Civil Eng. China, 5(3), 381-393.   DOI
6 Ding, F.X., Yu, Z.W. and Bai, Y. (2011b), "Elasto-plastic analysis of circular concrete-filled steel tube stub columns", J. Struct. Eng., 67(10), 1567-1577.
7 Ding, F.X., Lu, D.R. and Bai, Y. (2016a), "Comparative study of square stirrup-confined concrete-filled steel tubular stub columns under axial loading", Thin-Wall. Struct., 98(1), 443-453.   DOI
8 Ding, F.X., Li, Z., Cheng, S.S. and Yu, Z.W. (2016b), "Composite action of octagonal concrete-filled steel tubular stub columns under axial loading", Thin-Wall. Struct., 107(10), 453-461.   DOI
9 Ding, F.X., Tan, L., Liu, X.M. and Wang, L.P. (2017), "Behavior of circular thin-walled steel tube confined concrete stun columns", Steel Compos. Struct., Int. J., 23(2), 229-238. DOI: doi.org/10.12989/scs.2017.23.2.229   DOI
10 Han, L.H., Yao, G.H., Chen, Z.P. and Yu, Q. (2005), "Experimental behavior of steel tube confined concrete (STCC) columns", Steel Compos. Struct., Int. J., 5(6), 459-484.   DOI
11 Han, H., Cheng, J., Taheri, F. and Pegg, N. (2006), "Numerical and experimental investigations of the response of aluminum cylinders with a cutout subject to axial compression", Thin-Wall. Struct., 44, 254-270.   DOI
12 Hibbitt, Karlson & Sorensen Inc. (2003), ABAQUS/standard User's Manual; Version 6.4.1, Pawtucket, RI, USA.
13 Melchers, R.E. (2006), "Recent progress in the modeling of corrosion of structural steel immersed in Seawaters", Infrastruct. Syst., 12(3), 154-162.   DOI
14 Huang, Y.S., Long, Y.L. and Cai, J. (2008), "Ultimate strength of rectangular concrete-filled steel tubular (CFT) stub columns under axial compression", Steel Compos. Struct., Int. J., 8(2), 115-128.   DOI
15 Javidruzi, M., Vafai, A., Chen, J.F. and Chilton, J.C. (2004), "Vibration, buckling and dynamic stability of cracked cylindrical shells", Thin-Wall. Struct., 42, 79-99.   DOI
16 Johansson, M. and Gylltoft, K. (2002), "Mechanical behavior of circular steel-concrete composite Stub columns", J. Struct. Eng., 128(8), 1073-1081.   DOI
17 Jullien, J.F. and Limam, A. (1998), "Effects of openings of the buckling of cylindrical shells subjected to axial compression", Thin-Wall. Struct., 31(1-3), 187-202.   DOI
18 Lu, Z.H. and Zhao, Y.G. (2010), "Suggested empirical models for the axial capacity of circular CFT stub columns", J. Constr. Steel Res., 66(6), 850-862.   DOI
19 Ottosen, N.S. and Ristinmaa, M. (2005), "12-common plasticity models", The Mechanics of Constitutive Modeling, 279-319.
20 Park, J.W. and Choi, S.M. (2013), "Structural behavior of CFRP strengthened concrete-filled steel tubes columns under axial compression loads", Steel Compos. Struct., Int. J., 14(5), 453-472.   DOI
21 Sultana, S., Wang, Y. and Sobey, A.J. (2015), "Influence of corrosion on the ultimate compressive strength of steel plates and stiffened panels", Thin-Wall. Struct., 96(11), 95-104.   DOI
22 Yu, Z.W., Ding, F.X. and Cai, C.S. (2007), "Experimental behavior of circular concrete-filled steel tube stub columns", J. Constr. Steel Res., 63(2), 165-174.   DOI
23 Wang, Q.T. and Chang, X. (2013), "Analysis of concrete-filled steel tubular columns with "T" shaped cross section (CFTTS)" Steel Compos. Struct., Int. J., 15(1), 41-55.   DOI
24 Xiamuxi, A. and Akira, H. (2011), "Compression test of RCFT columns with thin-walled steel tube and high strength concrete", Steel Compos. Struct., Int. J., 11(5), 391-402.   DOI