It is difficult for mobile learners to maintain a high level of concentration when learning content for more than an hour while they are on the move. Despite the attention span issue, many m-learning systems still provide their mobile learners with the same content once used in e-learning systems. This has called for an investigation to identify the suitable characteristics of the m-learning environment. With this in mind, we have conducted a survey in hopes of determining the requirements for developing more suitable m-learning content. Based on the results of the survey, we have developed a content model comprised of two types: a segment type and a supplement type. In addition, we have implemented a prototype system of the content model for Apple iPhones and Android smartphones in order to investigate a feasibility study of the model application.
It was discovered that ammonium phosphate in the medium played an important role in both growing mycelium and producing exopolysaccharides (EPS) from G. lucidum. In lower concentration levels of ammonium phosphate (0-3 g/l), an improved mycelial growth was observed by maintaining more filamentous morphology than in high concentrations (5-11 g/l). In addition, it was confirmed by comparing the factual dimension and frequency of the area regarding the mycelial pellets. This must be attributed to limitations of nutrient transfer by maintaining filamentous mycelium during the cultivation in a low ammonium phosphate containing medium. On the other hand, the best EPS production was observed in medium with the absence or low concentration of ammonium phosphate. The shear stress of the culture broth was greatly affected by the shear rate, as compared with that of the culture broth with high ammonium phosphate concentration. The rheological characteristics of the fermentation broth and filtrate worked well according to the Herschel-Bulkley model. It was also found that the morphological changes of the mycelium resulting from the ammonium phosphate concentration directly affected the rheological characteristics of the system and resulted in reversely affecting the EPS production levels. Based on these results, it can be concluded that delicate regulation of the ammonium phosphate concentration in the culture media should be provided in order to obtain optimal mycelial growth and/or EPS production.
Odor dispersion around a cubic building from rooftop odor emissions was investigated using computational fluid dynamics (CFD). The Shear Stress Transport (here after SST) $k-{\omega}$ model in FLUENT CFD code was used to simulate the flow and odor dispersion around a cubic building. The CFD simulations were performed for three different configurations of cubic buildings comprised of one building, two buildings or three buildings. Five test emission rates were assumed as 1000 OU/s, 2000 OU/s, 3000 OU/s, 4000 OU/s and 5000 OU/s, respectively. Experimental data from wind tunnels obtained by previous studies are used to validate the numerical result of an isolated cubic building. The simulated flow and concentration results of neutral stability condition were compared with the wind tunnel experiments. The profile of streamline velocity and concentration simulation results show a reasonable level of agreement with wind tunnel data. In case of a two-building configuration, the result of emission rate 1000 OU/s illustrates the same plume behavior as a one-building configuration. However, the plume tends to the cover rooftop surface and windward facet of a downstream building as the emission rate increases. In case of a three-building configuration, low emission rates (<4000 OU/s) form a similar plume zone to that of a two-building configuration. However, the addition of a third building, with an emission rate of 5000 OU/s, creates a much greater odorous plume zone on the surface of second building in comparison with a two-building configuration.
The effects of operating pressure, lactate concentration, impurities, and pH on solution flux and lactate rejection in nanofiltration were investigated with model sodium lactate solutions (lactate 10~200g/L) as a model system. In the tested range of pressure(80~140 psig), the solution flux was observed to be proportional to the operating pressure and the rejection of lactate increased only slightly with the pressure. Both of the flux and the rejection decreased with lactate concentration, while the recovery rate of lactate increased. The effects of glucose and yeast extract as impurities on lactate rejection were negligible, but the flux decreased significantly with the addition of yeast extract. At low lactate concentrations, the rejection of lactate increased with pH due to the increased repulsion (Donnan exclusion effect) between lactate ions and membrane surface. But, at high lactate concentrations, the donnan effect was observed to be overwhelmed by the effect of sodium ions added to adjust the pH, and the rejection of lactate decreased with pH. When fermentation broth containing about 89g/L of lactate was nanofiltered, the flux and the rejection of lactate were 2.8L/$m^2$h and 5%, respectively at 120psig. Both of them were slightly lower than those with model solutions. The recovery rate was 2.6mol/$m^2$h.
인삼을 닭고기에 분말상태 및 기존 항산화제와 혼합 첨가한 상태에서 항산화 효과를 조사한 바 그 결과는 다음과 같다. 1. 인삼을 분말상태로 첨가한 결과, 인삼의 첨가수준이 증가할수록 지방산화를 억제하는 효과는 점차적으로 증가하늘 경향을 보였지만 항산화 효과의 증가정도는 점차 감소하는 추세를 보였다. 2. 기존 항산화제인 Sodium nitrite와 ascorbate 그러고 미생물 생장억제제인 sorbic acid를 혼합한 시료에 인상을 첨가한 결과, 인삼을 첨가한 처리구가 인삼을 첨가하지 않은 처리극에 비해 상대적으로 높은 항신화효과를 보이고 있었으며, 인삼, nitrite, sorbic acid 및 ascorbate등을 혼합첨가한 구(G-NaSoAs)가 가장 높은 항산화효과를 보인 반면 Nitrite와 Sorbic acid를 첨가한 구(NaSo)는 가장 낮은 항산화효과를 보였다.
Objectives: This study aimed to review model algorithms and input parameters applied to some exposure models and to compare the simulated estimates using an exposure scenario from each model. Methods: A total of five exposure models which can estimate inhalation exposure were selected; the Korea Ministry of Environment(KMOE) exposure model, European Centre for Ecotoxicology and Toxicology of Chemicals Targeted Risk Assessment(ECETOC TRA), SprayExpo, and ConsExpo model. Algorithms and input parameters for exposure estimation were reviewed and the exposure scenario was used for comparing the modeled estimates. Results: Algorithms in each model commonly consist of the function combining physicochemical properties, use characteristics, user exposure factors, and environmental factors. The outputs including air concentration ($mg/m^3$) and inhaled dose(mg/kg/day) are estimated applying input parameters with the common factors to the algorithm. In particular, the input parameters needed to estimate are complicated among the models and models need more individual input parameters in addition to common factors. In case of CEM, it can be obtained more detailed exposure estimates separating user's breathing zone(near-field) and those at influencing zone(far-field) by two-box model. The modeled exposure estimates using the exposure scenario were similar between the models; they were ranged from 0.82 to $1.38mg/m^3$ for concentration and from 0.015 to 0.180 mg/kg/day for inhaled dose, respectively. Conclusions: Modeling technique can be used for a useful tool in the process of exposure assessment if the exposure data are scarce, but it is necessary to consider proper input parameters and exposure scenario which can affect the real exposure conditions.
PM (particulate matter) is of interest to everyone because it can have adverse effects on human health by the infiltration from respiratory to internal organs. To date, many studies have made efforts for the prediction of PM10 and PM2.5 concentrations. Unlike previous studies, we conducted the prediction of tomorrow's PM10 concentration for the Air Korea stations using Chinese PM10 data in addition to the satellite AOD and weather variables. We constructed 230,639 matchups from the raw data over 3 million and built an RF (random forest) model from the matchups to cope with the complexity and nonlinearity. The validation statistics from the blind test showed excellent accuracy with the RMSE (root mean square error) of 9.905 ㎍/㎥ and the CC (correlation coefficient) of 0.918. Moreover, our prediction model showed a stable performance without the dependency on seasons or the degree of PM10 concentration. However, part of coastal areas had a relatively low accuracy, which implies that a dedicated model for coastal areas will be necessary. Additional input variables such as wind direction, precipitation, and air stability should also be incorporated into the prediction model as future work.
Ozkir, Serhat Emre;Unal, Server Mutluay;Yurekli, Emel;Guven, Sedat
The Journal of Advanced Prosthodontics
/
제8권2호
/
pp.131-136
/
2016
PURPOSE. The aim of this study was to observe stress concentration in the implant, the surrounding bone, and other components under the pull-out force during the crown removal. MATERIALS AND METHODS. Two 3-dimensional models of implant-supported conventional metal ceramic crowns were digitally constructed. One model was designed as a vertically placed implant ($3.7mm{\times}10mm$) with a straight abutment, and the other model was designed as a 30-degree inclined implant ($3.7mm{\times}10mm$) with an angled abutment. A pull-out force of 40 N was applied to the crown. The stress values were calculated within the dental implant, the abutment, the abutment screw, and the surrounding bone. RESULTS. The highest stress concentration was observed at the coronal portion of the straight implant (9.29 MPa). The stress concentrations at the cortical bone were lower than at the implants, and maximum stress concentration in bone structure was 1.73 MPa. At the abutment screws, the stress concentration levels were similiar (3.09 MPa and 3.44 MPa), but the localizations were different. The stress at the angled abutment was higher than the stress at the straight abutment. CONCLUSION. The pull-out force, applied during a crown removal, did not show an evident effect in bone structure. The higher stress concentrations were mostly observed at the implant and the abutment collar. In addition, the abutment screw, which is the weakest part of an implant system, also showed stress concentrations. Implant angulation affected the stress concentration levels and localizations. CLINICAL IMPLICATIONS. These results will help clinicians understand the mechanical behavior of cement-retained implant-supported crowns during crown retrieval.
This study aims to estimate chlorophyll-a concentration in rivers using multi-spectral RapidEye imagery and Spectral Mixture Analysis (SMA) and assess the applicability of SMA for multi-temporal imagery analysis. Comparison between images (acquired on Oct. and Nov., 2013) predicted and ground reference chlorophyll-a concentration showed significant performance statistically with determination coefficients of 0.49 and 0.51, respectively. Two band (Red-RE) model for the October and November 2013 RapidEye images showed low performance with coefficient of determinations ($R^2$) of 0.26 and 0.16, respectively. Also Three band (Red-RE-NIR) model showed different performance with $R^2$ of 0.016 and 0.304, respectively. SMA derived Chlorophyll-a concentrations showed relatively higher accuracy than band ratio models based values. SMA was the most appropriate method to calculate Chlorophyll-a concentration using images which were acquired on period of low Chlorophyll-a concentrations. The results of SMA for multi-temporal imagery showed low performance because of the spatio-temporal variation of each end members. This approach provides the potential of providing a cost effective method of monitoring river water quality and management using multi-spectral imagery. In addition, the calculated Chlorophyll-a concentrations using multi-spectral RapidEye imagery can be applied to water quality modeling, enhancing the predicting accuracy.
We propose a prediction method of the pollutant and a synchronous classification of the current state of SOx emission in the power plant. We use the auto-regressive with exogeneous (ARX) model as a predictor of SOx emission and use a radial basis function network (RBFN) as a pattem classifier. The ARX modeling scheme is implemented using recursive least squares (RLS) method to update the model parameters adaptively. The capability of SOx emission monitoring is utilized with the application of the RBFN classifier. Experimental results show that the ARX model can predict the SOx emission concentration well and ARX modeling parameters can be a good feature for the state monitoring. in addition, its validity has been verified through the power spectrum analysis. Consequently, the RBFN classifier in combination with ARX model is shown to be quite adequate for monitoring the state of SOx emission.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.