• Title/Summary/Keyword: Computing trends

Search Result 312, Processing Time 0.024 seconds

Edge Computing Market Trends and Application Scenarios (엣지 컴퓨팅 시장 동향 및 산업별 적용 사례)

  • Shin, S.S.;Min, D.H.;Ahn, J.Y.;Kim, S.M.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.2
    • /
    • pp.51-59
    • /
    • 2019
  • Edge computing, which is computing on the edge of the network, is becoming a market value as a means of overcoming the fear of communication disconnection and delay reduction, which are the technical weaknesses of cloud computing. Edge computing is continuously expanding applications in various applications such as safety industry, smart factories, autonomous vehicles, mobile communications, and AR/VR. Looking at edge computing trends from Microsoft, IBM, HPE, and Dell EMC, current edge computing must be understood as an integral binding technology and not as a simple complement to the cloud. This paper examines market trends in edge computing and analyzes the impact of edge computing on major related industries.

Trends in Standardization for Intelligent Computing (지능형 컴퓨팅 표준화 동향)

  • J.H. Hong;K.C. Lee
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.4
    • /
    • pp.70-80
    • /
    • 2023
  • In recent years, our society has shifted from an information society to an intelligent information society, in which computing has become a key factor in shaping and driving social development. In this new era of digital civilization powered by the Internet of Things, traditional data-based computing is no longer sufficient to meet the growing demand for higher levels of intelligence. Therefore, intelligent computing has emerged, reshaping traditional computing and forming new computing paradigms to promote the digital revolution in the era of the Internet of Things, big data, and artificial intelligence. Intelligent computing has greatly expanded the scope of computing through new computing theories, architectures, methodologies, systems, and applications, and it is expanding into diverse computing paradigms such as perceptual intelligence, cognitive intelligence, autonomous intelligence, and human-computer fusion intelligence. This paper introduces the concept and main features of intelligent computing and describes trends in standardization for intelligent computing within the ISO/IEC JTC 1, focusing on the technical trend report on intelligent computing that is currently under development within ISO/ IEC JTC 1/AG 2.

Multi-cloud Technology Introduction and Research Trends (멀티 클라우드 기술 개요 및 연구 동향)

  • Kim, B.S.;Jung, Y.W.;Oh, B.T.;Kim, S.Y.;Son, S.;Seo, J.H.;Bae, S.J.;Lee, G.C.;Kang, D.J.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.3
    • /
    • pp.45-54
    • /
    • 2020
  • The cloud computing industry has focused on establishing a cloud-based business environment for enterprises with efforts to convert using their own on-premise computing infrastructures to using cloud services. With these efforts, using cloud services has become natural, especially for the IT industry. The cloud computing industry is moving toward proliferation of the cloud computing environment into various evolving industries. Along with industrial trends, new technical trends such as edge computing and multi-cloud are emerging. These trends are expected to create new business models and develop related service ecosystems, providing new opportunities for service providers and new experiences for users. A mong those emerging technologies, multi-cloud technology is expected to realize unlimited global cloud computing resources by unifying cloud resources from multiple public cloud service providers. In this paper, we introduce the concept and related trends of multi-cloud technology. Subsequently, we analyze the main functionalities and several use cases of multi-cloud technology. Finally, we summarize the effects and usefulness of multi-cloud technology in the domestic cloud industry.

Trends in Edge Computing Technology (엣지 컴퓨팅 기술 동향)

  • Hong, J.H.;Lee, K.C.;Lee, S.Y.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.6
    • /
    • pp.78-87
    • /
    • 2020
  • With the evolution of the Internet of Things (IoT), a computing paradigm shift from cloud to edge computing is rapidly taking place to effectively manage the rapidly increasing volume of data generated by various IoT devices. Edge computing is computing that occurs at or near the physical location of a user or data source. Placing computing services closer to these locations allows users to benefit from faster and more reliable services, and enterprises can take advantage of the flexibility of hybrid cloud computing. This paper describes the concept and main benefits of edge computing and presents the trends and future prospects for edge computing technology.

Technology Standard Trends in Distributed and Edge Cloud Computing (분산 및 에지 클라우드 기술 표준 동향)

  • M.K. In;K.C. Lee;S.Y. Lee
    • Electronics and Telecommunications Trends
    • /
    • v.39 no.3
    • /
    • pp.69-78
    • /
    • 2024
  • Cloud computing technology based on centralized high-performance computing has brought about major changes across the information technology industry and led to new paradigms. However, with the rapid development of the industry and increasing need for mass generation and real-time processing of data across various fields, centralized cloud computing is lagging behind the demand. This is particularly critical in emerging technologies such as autonomous driving, the metaverse, and augmented/virtual reality that require the provision of services with ultralow latency for real-time performance. To address existing limitations, distributed and edge cloud computing technologies have recently gained attention. These technologies allow for data to be processed and analyzed closer to their point of generation, substantially reducing the response times and optimizing the network bandwidth usage. We describe distributed and edge cloud computing technologies and explore the latest trends in their standardization.

United States-China Competition for Technological Supremacy in Quantum Computing and Policy Trends (미중 기술패권 경쟁과 양자컴퓨팅 정책 동향)

  • S.J. Lee;S.H. Jeong;B.S. Cho
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.4
    • /
    • pp.47-57
    • /
    • 2023
  • The competition for technological supremacy is unfolding in the high-tech field, and quantum computing can be determinant for economic and security ripple effects. The United States and China, leaders in quantum computing, have developed this field through adequate policies. The United States has fostered quantum computing through government policies and competition among private companies, while China has secured world-class technology through large-scale government investment and attracting foreign talent. In quantum computing, securing talented people is essential to guarantee independent technology development regarding academic attributes and security. We analyze quantum computing policies in the United States and China on a timeline and determine their policy trends. In addition, the policies for securing talent in these countries are reviewed, and the policy effects are compared based on literature analysis. Through the analysis of policy cases between the United States and China, bilateral policy implications for Korea are delineated.

Cloud Computing Industry Trends for Artificial Intelligence (인공지능을 위한 클라우드 컴퓨팅 산업 동향)

  • Choi, J.R.;Song, Y.M.;Kim, C.H.;Kim, S.J.
    • Electronics and Telecommunications Trends
    • /
    • v.32 no.5
    • /
    • pp.107-116
    • /
    • 2017
  • Artificial intelligence has recently been regarded as a key engine of future industry, and cloud computing and big data technologies have begun to receive significant attention. Major global vendors such as IBM, Microsoft, Google, and Amazon have been launching cloud-computing services for artificial intelligence. On the other hand, the situation domestically is now at an early stage. This report describes the industry trends both domestically and internationally regarding cloud computing for artificial intelligence. We also describe to significance of cloud computing ecosystem and data competitiveness for artificial intelligence.

ETRI AI Strategy #2: Strengthening Competencies in AI Semiconductor & Computing Technologies (ETRI AI 실행전략 2: AI 반도체 및 컴퓨팅시스템 기술경쟁력 강화)

  • Choi, S.S.;Yeon, S.J.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.7
    • /
    • pp.13-22
    • /
    • 2020
  • There is no denying that computing power has been a crucial driving force behind the development of artificial intelligence today. In addition, artificial intelligence (AI) semiconductors and computing systems are perceived to have promising industrial value in the market along with rapid technological advances. Therefore, success in this field is also meaningful to the nation's growth and competitiveness. In this context, ETRI's AI strategy proposes implementation directions and tasks with the aim of strengthening the technological competitiveness of AI semiconductors and computing systems. The paper contains a brief background of ETRI's AI Strategy #2, research and development trends, and key tasks in four major areas: 1) AI processors, 2) AI computing systems, 3) neuromorphic computing, and 4) quantum computing.

Technical Trends of Computing Infrastructure for Agent Based Modeling & Simulation (에이전트 기반 모델링 및 시뮬레이션을 위한 컴퓨팅 인프라 기술 동향)

  • Jung, Y.W.;Son, S.;Oh, B.T.;Lee, G.C.;Bae, S.J.;Kim, B.S.;Kang, D.J.;Jung, Y.J.
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.5
    • /
    • pp.111-120
    • /
    • 2018
  • Agent-based modeling and simulation (ABMS) is a computational method for analyzing research targets through observations of agent-to-agent interactions, and can be applied to multidimensional policy experiments in various fields of social sciences to support policy and decision making. Recently, according to increasing complexity of society and the rapid growth of collected data, the need for high-speed processing is considered to be more important in this field. For this reason, in the ABMS research field, a scalable and large-scale computing infrastructure is becoming an essential element, and cloud computing has been considered a promising infrastructure of ABMS. This paper surveys the technology trends of ABMS tools, cloud computing-based modeling, and simulation studies, and forecasts the use of cloud-computing infrastructure for future modeling and simulation tools. Although fundamental studies are underway to apply and operate cloud computing in the areas of modeling and simulation, new and additional studies are required to devise an optimal cloud computing infrastructure to satisfy the needs of large-scale ABMS.

Trends in AI Computing Processor Semiconductors Including ETRI's Autonomous Driving AI Processor (인공지능 컴퓨팅 프로세서 반도체 동향과 ETRI의 자율주행 인공지능 프로세서)

  • Yang, J.M.;Kwon, Y.S.;Kang, S.W.
    • Electronics and Telecommunications Trends
    • /
    • v.32 no.6
    • /
    • pp.57-65
    • /
    • 2017
  • Neural network based AI computing is a promising technology that reflects the recognition and decision operation of human beings. Early AI computing processors were composed of GPUs and CPUs; however, the dramatic increment of a floating point operation requires an energy efficient AI processor with a highly parallelized architecture. In this paper, we analyze the trends in processor architectures for AI computing. Some architectures are still composed using GPUs. However, they reduce the size of each processing unit by allowing a half precision operation, and raise the processing unit density. Other architectures concentrate on matrix multiplication, and require the construction of dedicated hardware for a fast vector operation. Finally, we propose our own inAB processor architecture and introduce domestic cutting-edge processor design capabilities.