• Title/Summary/Keyword: Computing Cost

Search Result 1,172, Processing Time 0.026 seconds

Service Deployment Strategy for Customer Experience and Cost Optimization under Hybrid Network Computing Environment

  • Ning Wang;Huiqing Wang;Xiaoting Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.11
    • /
    • pp.3030-3049
    • /
    • 2023
  • With the development and wide application of hybrid network computing modes like cloud computing, edge computing and fog computing, the customer service requests and the collaborative optimization of various computing resources face huge challenges. Considering the characteristics of network environment resources, the optimized deployment of service resources is a feasible solution. So, in this paper, the optimal goals for deploying service resources are customer experience and service cost. The focus is on the system impact of deploying services on load, fault tolerance, service cost, and quality of service (QoS). Therefore, the alternate node filtering algorithm (ANF) and the adjustment factor of cost matrix are proposed in this paper to enhance the system service performance without changing the minimum total service cost, and corresponding theoretical proof has been provided. In addition, for improving the fault tolerance of system, the alternate node preference factor and algorithm (ANP) are presented, which can effectively reduce the probability of data copy loss, based on which an improved cost-efficient replica deployment strategy named ICERD is given. Finally, by simulating the random occurrence of cloud node failures in the experiments and comparing the ICERD strategy with representative strategies, it has been validated that the ICERD strategy proposed in this paper not only effectively reduces customer access latency, meets customers' QoS requests, and improves system service quality, but also maintains the load balancing of the entire system, reduces service cost, enhances system fault tolerance, which further confirm the effectiveness and reliability of the ICERD strategy.

Performance Evaluation of Scheduling Algorithms according to Communication Cost in the Grid System of Co-allocation Environment (Co-allocation 환경의 그리드 시스템에서 통신비용에 따른 스케줄링 알고리즘의 성능 분석)

  • Kang, Oh-Han;Kang, Sang-Seong;Kim, Jin-Suk
    • The KIPS Transactions:PartA
    • /
    • v.14A no.2
    • /
    • pp.99-106
    • /
    • 2007
  • Grid computing, a mechanism which uses heterogeneous systems that are geographically distributed, draws attention as a new paradigm for the next generation operation of parallel and distributed computing. The importance of grid computing concerning communication cost is very huge because grid computing furnishes uses with integrated virtual computing service, in which a number of computer systems are connected by a high-speed network. Therefore, to reduce the execution time, the scheduling algorithm in grid environment should take communication cost into consideration as well as computing ability of resources. However, most scheduling algorithms have not only ignored the communication cost by assuming that all tasks were dealt in one cluster, but also did not consider the overhead of communication cost when the tasks were processed in a number of clusters. In this paper, the functions of original scheduling algorithms are analyzed. More importantly, the functions of algorithms are compared and analyzed with consideration of communication cost within the co allocation environment, in which a task is performed separately in many clusters.

Analysis of Billing System using AHP for Cloud Computing Services (클라우드 컴퓨팅 환경에서 AHP를 이용한 서비스 과금체계 연구)

  • Chang, Pil Sik;Choi, Il Young;Choi, Ju Cheol;Kim, Jae Kyeong
    • Journal of Information Technology Services
    • /
    • v.11 no.3
    • /
    • pp.129-159
    • /
    • 2012
  • Cloud-computing is in the limelight with expectation for cost reduction, because it alleviates the burden of initial investment and maintenance cost and based on pay-as-you-use billing policy. However, many suppliers of Cloud-computing service are suggesting diverse and complicated billing policies without consideration for setting reasonable service billing policy and definite criteria of properties to determine service billing system. So companies willing to use Cloud-computing service are hard to understand the billing system and often spend more expensive cost than necessary. Therefore, this study invested billing system properties of four representative suppliers. Based on these properties of billing system, this study found priorities using AHP survey which conducted to experts who are able to make decisions for adopting Cloud-computing in the company using or willing to use Cloud-computing service. We expect that this study can suggest basic guideline for comparing and analyzing properties of Cloud-computing service with standardized and objective method.

An Analysis of the Interaction Effect of Benefit and Cost on Cloud Computing Service (클라우드 컴퓨팅 서비스 혜택과 비용의 상호작용 효과에 관한 연구)

  • Park, So Yeon;Kim, Yongwon
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.2 no.1
    • /
    • pp.27-34
    • /
    • 2013
  • IT has been receiving increasing attention for cloud computing services. However, despite a lot of attention, there are limitations of existing research on cloud computing services. There are researches respectively about the benefits and costs that would occur if you choose a cloud computing services. However, in real life, consumers should be considered about the benefits and costs at the same time if they choose and use a cloud computing service. Therefore, this study examines the interaction effect of benefits and costs on cloud computing service. The findings demonstrate that three independent variables(usefulness, social influence, and innovativeness) positively(+) affect the perceived value. However, showed the benefits and costs of interaction effects analysis, usefulness and innovation on the cost influence the perceived value in statistics. The interaction of the usefulness & cost shows negative(-) effect and the interaction of the innovativeness & cost has positve(+) effect on the perceived value. In conclusion, this study provide that consumers need to consider costs with benefits when they use a cloud computing service.

Strategy for Task Offloading of Multi-user and Multi-server Based on Cost Optimization in Mobile Edge Computing Environment

  • He, Yanfei;Tang, Zhenhua
    • Journal of Information Processing Systems
    • /
    • v.17 no.3
    • /
    • pp.615-629
    • /
    • 2021
  • With the development of mobile edge computing, how to utilize the computing power of edge computing to effectively and efficiently offload data and to compute offloading is of great research value. This paper studies the computation offloading problem of multi-user and multi-server in mobile edge computing. Firstly, in order to minimize system energy consumption, the problem is modeled by considering the joint optimization of the offloading strategy and the wireless and computing resource allocation in a multi-user and multi-server scenario. Additionally, this paper explores the computation offloading scheme to optimize the overall cost. As the centralized optimization method is an NP problem, the game method is used to achieve effective computation offloading in a distributed manner. The decision problem of distributed computation offloading between the mobile equipment is modeled as a multi-user computation offloading game. There is a Nash equilibrium in this game, and it can be achieved by a limited number of iterations. Then, we propose a distributed computation offloading algorithm, which first calculates offloading weights, and then distributedly iterates by the time slot to update the computation offloading decision. Finally, the algorithm is verified by simulation experiments. Simulation results show that our proposed algorithm can achieve the balance by a limited number of iterations. At the same time, the algorithm outperforms several other advanced computation offloading algorithms in terms of the number of users and overall overheads for beneficial decision-making.

An Offloading Scheduling Strategy with Minimized Power Overhead for Internet of Vehicles Based on Mobile Edge Computing

  • He, Bo;Li, Tianzhang
    • Journal of Information Processing Systems
    • /
    • v.17 no.3
    • /
    • pp.489-504
    • /
    • 2021
  • By distributing computing tasks among devices at the edge of networks, edge computing uses virtualization, distributed computing and parallel computing technologies to enable users dynamically obtain computing power, storage space and other services as needed. Applying edge computing architectures to Internet of Vehicles can effectively alleviate the contradiction among the large amount of computing, low delayed vehicle applications, and the limited and uneven resource distribution of vehicles. In this paper, a predictive offloading strategy based on the MEC load state is proposed, which not only considers reducing the delay of calculation results by the RSU multi-hop backhaul, but also reduces the queuing time of tasks at MEC servers. Firstly, the delay factor and the energy consumption factor are introduced according to the characteristics of tasks, and the cost of local execution and offloading to MEC servers for execution are defined. Then, from the perspective of vehicles, the delay preference factor and the energy consumption preference factor are introduced to define the cost of executing a computing task for another computing task. Furthermore, a mathematical optimization model for minimizing the power overhead is constructed with the constraints of time delay and power consumption. Additionally, the simulated annealing algorithm is utilized to solve the optimization model. The simulation results show that this strategy can effectively reduce the system power consumption by shortening the task execution delay. Finally, we can choose whether to offload computing tasks to MEC server for execution according to the size of two costs. This strategy not only meets the requirements of time delay and energy consumption, but also ensures the lowest cost.

Adaptive Scheduling for QoS-based Virtual Machine Management in Cloud Computing

  • Cao, Yang;Ro, Cheul Woo
    • International Journal of Contents
    • /
    • v.8 no.4
    • /
    • pp.7-11
    • /
    • 2012
  • Cloud Computing can be viewed as a dynamically-scalable pool of resources. Virtualization is one of the key technologies enabling Cloud Computing functionalities. Virtual machines (VMs) scheduling and allocation is essential in Cloud Computing environment. In this paper, two dynamic VMs scheduling and allocating schemes are presented and compared. One dynamically on-demand allocates VMs while the other deploys optimal threshold to control the scheduling and allocating of VMs. The aim is to dynamically allocate the virtual resources among the Cloud Computing applications based on their load changes to improve resource utilization and reduce the user usage cost. The schemes are implemented by using SimPy, and the simulation results show that the proposed adaptive scheme with one threshold can be effectively applied in a Cloud Computing environment both performance-wise and cost-wise.

Matrix-based Filtering and Load-balancing Algorithm for Efficient Similarity Join Query Processing in Distributed Computing Environment (분산 컴퓨팅 환경에서 효율적인 유사 조인 질의 처리를 위한 행렬 기반 필터링 및 부하 분산 알고리즘)

  • Yang, Hyeon-Sik;Jang, Miyoung;Chang, Jae-Woo
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.7
    • /
    • pp.667-680
    • /
    • 2016
  • As distributed computing platforms like Hadoop MapReduce have been developed, it is necessary to perform the conventional query processing techniques, which have been executed in a single computing machine, in distributed computing environments efficiently. Especially, studies on similarity join query processing in distributed computing environments have been done where similarity join means retrieving all data pairs with high similarity between given two data sets. But the existing similarity join query processing schemes for distributed computing environments have a problem of skewed computing load balance between clusters because they consider only the data transmission cost. In this paper, we propose Matrix-based Load-balancing Algorithm for efficient similarity join query processing in distributed computing environment. In order to uniform load balancing of clusters, the proposed algorithm estimates expected computing cost by using matrix and generates partitions based on the estimated cost. In addition, it can reduce computing loads by filtering out data which are not used in query processing in clusters. Finally, it is shown from our performance evaluation that the proposed algorithm is better on query processing performance than the existing one.

A Fault Tolerant Data Management Scheme for Healthcare Internet of Things in Fog Computing

  • Saeed, Waqar;Ahmad, Zulfiqar;Jehangiri, Ali Imran;Mohamed, Nader;Umar, Arif Iqbal;Ahmad, Jamil
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.1
    • /
    • pp.35-57
    • /
    • 2021
  • Fog computing aims to provide the solution of bandwidth, network latency and energy consumption problems of cloud computing. Likewise, management of data generated by healthcare IoT devices is one of the significant applications of fog computing. Huge amount of data is being generated by healthcare IoT devices and such types of data is required to be managed efficiently, with low latency, without failure, and with minimum energy consumption and low cost. Failures of task or node can cause more latency, maximum energy consumption and high cost. Thus, a failure free, cost efficient, and energy aware management and scheduling scheme for data generated by healthcare IoT devices not only improves the performance of the system but also saves the precious lives of patients because of due to minimum latency and provision of fault tolerance. Therefore, to address all such challenges with regard to data management and fault tolerance, we have presented a Fault Tolerant Data management (FTDM) scheme for healthcare IoT in fog computing. In FTDM, the data generated by healthcare IoT devices is efficiently organized and managed through well-defined components and steps. A two way fault-tolerant mechanism i.e., task-based fault-tolerance and node-based fault-tolerance, is provided in FTDM through which failure of tasks and nodes are managed. The paper considers energy consumption, execution cost, network usage, latency, and execution time as performance evaluation parameters. The simulation results show significantly improvements which are performed using iFogSim. Further, the simulation results show that the proposed FTDM strategy reduces energy consumption 3.97%, execution cost 5.09%, network usage 25.88%, latency 44.15% and execution time 48.89% as compared with existing Greedy Knapsack Scheduling (GKS) strategy. Moreover, it is worthwhile to mention that sometimes the patients are required to be treated remotely due to non-availability of facilities or due to some infectious diseases such as COVID-19. Thus, in such circumstances, the proposed strategy is significantly efficient.

CTaG: An Innovative Approach for Optimizing Recovery Time in Cloud Environment

  • Hung, Pham Phuoc;Aazam, Mohammad;Huh, Eui-Nam
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.4
    • /
    • pp.1282-1301
    • /
    • 2015
  • Traditional infrastructure has been superseded by cloud computing, due to its cost-effective and ubiquitous computing model. Cloud computing not only brings multitude of opportunities, but it also bears some challenges. One of the key challenges it faces is recovery of computing nodes, when an Information Technology (IT) failure occurs. Since cloud computing mainly depends upon its nodes, physical servers, that makes it very crucial to recover a failed node in time and seamlessly, so that the customer gets an expected level of service. Work has already been done in this regard, but it has still proved to be trivial. In this study, we present a Cost-Time aware Genetic scheduling algorithm, referred to as CTaG, not only to globally optimize the performance of the cloud system, but also perform recovery of failed nodes efficiently. While modeling our work, we have particularly taken into account the factors of network bandwidth and customer's monetary cost. We have implemented our algorithm and justify it through extensive simulations and comparison with similar existing studies. The results show performance gain of our work over the others, in some particular scenarios.