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Abstract 
 

Traditional infrastructure has been superseded by cloud computing, due to its cost-effective 
and ubiquitous computing model. Cloud computing not only brings multitude of opportunities, 
but it also bears some challenges. One of the key challenges it faces is recovery of computing 
nodes, when an Information Technology (IT) failure occurs. Since cloud computing mainly 
depends upon its nodes, physical servers, that makes it very crucial to recover a failed node in 
time and seamlessly, so that the customer gets an expected level of service. Work has already 
been done in this regard, but it has still proved to be trivial. In this study, we present a 
Cost-Time aware Genetic scheduling algorithm, referred to as CTaG, not only to globally 
optimize the performance of the cloud system, but also perform recovery of failed nodes 
efficiently. While modeling our work, we have particularly taken into account the factors of 
network bandwidth and customer’s monetary cost. We have implemented our algorithm and 
justify it through extensive simulations and comparison with similar existing studies. The 
results show performance gain of our work over the others, in some particular scenarios. 
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1. Introduction 

Cloud computing (CC) has emerged as a promising as well as inevitable technology [9], 
deemed as an ideal solution to handle the requirements of today’s increasing demands, more 
specifically, in terms of availability, total cost of ownership (TCO), and time to value (TTV) 
[20, 21]. Number of enterprises, specially large-scale businesses, have been adopting CC, 
resulting in popularity of cloud-based services. For highly computationally complex business 
processes, CC is becoming a necessity. 

To achieve high performance, reliability, and availability of cloud services, thousands of 
servers coordinate with each other for efficient task scheduling and in the end, user satisfaction 
[4]. While achieving this, at times, computing nodes in a datacenter may fail, causing 
degradation of performance. Although, it is not very common for a server to face such 
situation, but across all devices in the datacenter, the effect can be very diverse [5]. Failure of 
nodes can not only adversely affect the performance, but also, reliability of services being 
provided [2]. Financial damage may be up to millions of dollars, if the system is not recovered 
in time [1]. On the other hand, customers may lose their trust, resulting in huge financial loss 
for the service provider. Service providers would always like their customers to be loyal with 
them and this depends mainly upon the quality and integrity of services.  

Other than the major facilities, like affordable cost, quick deployment, scalability, etc., 
cloud computing comes with, resiliency is considered to be a vital feature of it. It is very 
important to bring back the infrastructure into its original working state as soon as possible. 
Availability of the system and quick recovery from a failed state determines the level of trust 
of customers. That is why, in case of any failure, the system is ought to be brought back to 
normal seamlessly. In respect of recovery from failure, research activities have been focusing 
on different methodologies to minimize recovery time in high performance computing. 
Methodologies are mainly categorized into two: stochastic optimization [22, 23] and 
heuristic-based optimization [8, 10]. Heuristic approach solves the problem efficiently, but 
compromising on the performance. On the other hand, stochastic approach has a 
comparatively better performance, keeping in view the reliability of solution [6]. Both these 
approaches have their pros and cons, but overall, none of these approaches are preferable, 
since they do not take into account the network condition and monetary cost customers have to 
pay. In our work, we have tried our best to keep the advantages of both of these approaches 
and overcome their limitations. We present an efficient and cost-effective method, based on 
genetic algorithm, called CTaG, for task scheduling to globally optimize cloud-based system 
performance and reduce recovery time for physical server falures in cloud computing. Besides 
overall efficiency and reliability, we have considered network condition and monetary cost 
while designing our system. In designing our system, we foresee that the overall processing 
time of the cloud system can be significantly reduced and user experience and quality of 
service can be improved.  

We have evaluated our methodology through extensive simulations to justify its efficiency 
and performance. Comparison with the existing approaches proves the edge our approach has 
over the others. Our approach minimized both recovery time of failed nodes and monetary cost 
of customers, with a lower overhead, as compared to other approaches. As a result, a better 
efficiency per cost (EC) ratio is achieved. We believe that our approach can be very useful for 
the discussed situations, especially for small and medium sized business models, working on 
cloud based services. 
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The organization of this paper is in such a way that section 2 discusses already done work 
in this regard. Section 3 presents motivating scenarios and importance of our approach. We 
present our methodology in section 4. Implementation and evaluation are presented in section 
5. Section 6 concludes our paper. 

2. Related Work 
There is a survey of 584 individuals in U.S. organizations who have responsibility for data 
center operations. Among those organizations which experienced a loss of primary utility 
power, 91 percent reported unplanned outages [13]. Unplanned data center outages present a 
difficult and costly challenge for organizations. Therefore, to deliver better services to 
customers, cloud-based infrastructures are expected to come up with failure-tolerance and 
resiliency, which implies that those systems can be quickly recovered from failure because of 
the outages and restored to normal working state, especially for distributed systems. In those 
heterogeneous systems, scheduling algorithms play a key role in obtaining high performance. 
There have been numerous studies which attempt to solve task scheduling problems, where the 
sequence of the tasks (workflow) is popularly presented by a directed acyclic graph (DAG), as 
shown in Fig. 4. In [7], authors propose task scheduling approaches for assigning processors to 
task graph templates prepared in advance. The limitation of these methods is that they do not 
consider the network contention. They assume that the network has a perfect communication, 
and there is no limited bandwidth. Sinnen et al. [8] present an efficient task scheduling method 
based on network contention. This proposal has two steps: firstly, each task is set a priority 
based on the upward value of this task in the workflow; secondly, choose the most appropiate 
processor that minimizes the completion time of this priority based task. Anyhow, the method 
does not look attentively at monetary cost paid by cloud service customers (CSCs), for use of 
the cloud resources. 

In heterogeneous CC environment, despite numerous efforts, task scheduling remains one 
of the most challenging problems [6]. Good performance of workflow and satisfaction of a 
budget constraint are typical criteria for multitask scheduling. Authors in [28] introduce a 
cost-efficient approach to select the most appropriate system (private or public cloud) to 
execute the workflow. Selection also depends on the possibility of meeting the deadline of 
each workflow as well as the cost savings. L.Zeng et al. in [3] propose budget conscious 
scheduling Comparative Advantage (CA)  function to satisfy the strict budget constraint. In its 
first phase, each of tasks is assigned to the best VM whose CA1 value is maximum to get a 
worthy tradeoff between cost saving and efficiency. In the second phase, budget constraint is 
used in the CA2 function to evaluate the improvement of task reassignment to another VM on 
cost and performance. Notwithstanding CA is hard to be applied to the large-scale workflows. 
In the meantime, J. Li et al. in [11] present a scheduling algorithm CCSH to schedule the 
application of large graph processing with considering both cost and schedule length. The 
input cost-concious factor of this method is the cloud cost and used as a weight to calculate the 
earliest finish time EFT of each task. However, global optimality and tradeoff between cost 
and schedule length are not properly addressed in these approaches.  

Recently, some GAs have been developed for solving the globlal optimal problem in task 
scheduling.  The authors in [22] propose approaches using genetic processes to find multiple 
solutions faster and ensure global optimal usage of the processing system. Sachi et al. [23] 
develope a method based on genetic algorithm (GA) to find an optimal scheduling, which 
shows to be efficient to discover optimal solutions more than Heterogeneous Earliest Finish 
Time (HEFT) with same length of problem size, focusing on the quality of solution and effect 
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of muation probability on the performance of GA. Mohammad A. et al. [26] propose a GA 
based method which not only considers the deadline time in sorting the tasks in the first 
population, but also includes the maximum computational time of individuals in the 
population to define the priority level of these tasks. Hadis H. et al. [25] exhibit a node 
duplication genetic algorithm based technique to avoid some unnecessarily replicated node 
without any negative affect on its schedule length for minimizing inter processor traffic 
communication. Yujia et al. [27] show a new scheduling algorithm according to a fitness 
adaptive algorithm-job spanning time adaptive genetic algorithm, so as to enhance the overall 
performance of the cloud computing environment. Nonetheless, in these proposals, monetory 
cost and failure of computing devices are not considered. 

Zhang et al. in [19], and Y.Gu et al. in [14] introduce a solution to recover from failure 
according to check-pointing in stream processing system. As such, when the system has 
failure, it finds the closest ancestor node which is not impacted by failure to resume the results 
saved in that node. The authors in [10] come up with a scheme to reduce the recovery time in 
case of failure, but they do not contemplate the cost paid by users. Similar to our approach, 
Huynh T.T.B  in [24] proposes a genetic based method that miminizes the processing against a 
failure in a network system. But monetory cost  is not considered in this solution.  

For ease of understanding, we present an overview of common scheduling approaches 
along with ours in Table 1. 

 
Table 1. Overview of the existing scheduling approaches and ours 

 

Algorithm Target System 
Minimum 
Schedule 
Length 

Minimum 
Cost 

Trade
off 

Minimum 
Recovery 

Time 

Global 
Optimality 

H. Topcuoglu et al. 
[16] Heterogeneous Yes No No No No 

Oliver Sinnen et al. 
[8] Cloud Yes No No No No 

Gonzalo et al. [15] Cloud Yes No No No No 
Louis C. et al. [17] Heterogeneous Yes No No No No 
L.Zeng et al.  [3] Cloud Yes Yes Yes No No 
Ruben et al. [28] Cloud Yes Yes Yes No No 
J. Li et al. [11] Heterogeneous Yes Yes Yes No No 
Shohei G. et al. 
[10] 

Multicore 
processor Yes No No Yes No 

Zhang et al. [19] Stream 
processing Yes No No Yes No 

Tashniba K. et al. 
[22] 

Multicore 
processor Yes No No No Yes 

Sachi et al. [23]  Heterogeneous Yes No No No Yes 

Hadis H. et al. [25] Multicore 
processor Yes No No No Yes 

Mohammad A. et 
al. [26] 

Multicore 
processor Yes No No No Yes 

Yujia et al. [27] Cloud Yes No No No Yes 
Huynh T.T.B [24] Homogeneous Yes No No Yes Yes 
Our approach Cloud  Yes Yes Yes Yes Yes 
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As shown in Table 1, a desirable scheduling approach should consider all of the four factors 
including globally optimal execution time, network contention, cost of using cloud services 
and recovery time in the case of physical failure of servers. That can satisfy QoS as well as 
increase reliability and the reputation of the cloud provider. In this paper, we aim to provide a 
scheduling scheme which takes these factors into account and develop an algorithm to reduce 
the recovery time in the case of failure of a physical server in a data center. The main 
contribution of this work is the development of a genetic algorithm to determine the global 
optimal schedule. 

3. Motivation Scenario 

In this section, we discuss the importance and applicability of our work, by presenting relevant 
scenario. Fig. 1 illustrates cloud datacenter, having several physical servers (PSs), represented 
by bounded rectangles. Each of which may not have enough capacity to host all processors 
(rectangles), functioning as virtual machines (VMs), to fulfill user requirements in solving 
some computationally intensive tasks. These processors can communicate with each other via 
a network interface (gray circle). In one physical server, even if there is enough capacity, it is 
generally not recommended to have all the processors hosted in the same PS in order to avoid 
complete service unavailability in the case of power outage. Therefore, it is suggested, that 
tasks should be divided into smaller subtasks which are executed by processors (or VMs), 
located on different physical servers at the cloud provider side. Each of those processors can 
execute tasks independently.  
 
 
 
 
 
 
 
 
 

Fig. 1. A typical data center  

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. An example of existing task scheduling (a) and recovery solution (b) 
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One network interface is shared among the scheduled processors. Due to the high stability 
of the network among processors in the same local PS compared with the Internet, the average 
data transfer rate of internal communication is always higher than that of external one. In this 
regard, existing schedulers try to utilize this high speed link, resulting in many dependent tasks 
being assigned to processors hosted in the same PS. When a failure occurs, dependent tasks 
tend to be destroyed at a time, requiring a more time consuming process for recovery.  

In Fig. 2a an example is illustrated, regarding task scheduling created by an existing 
approach which does not consider the possibility of the system failure. In this scheduler, task 
v1, v2, and v3 are assigned to processors P1 and P2 that are located in the same PS in order to 
utilize the high speed communication between processors. After task v1 and v2 are executed in 
parallel, task v3 can be processed on processor P1. However, if the PS on which P1 and P2 
reside fails while task v3 is being executed, the results of all task nodes, are lost. If we want to 
recover the results, all the tasks v1, v2, and v3 have to be performed again on another physical 
server. This may double the execution time (Fig. 2b). 
     

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. An example of our scheduling proposal (a) and its recovery solution (b) 

Let us now discuss another situation where all tasks in the critical path are assigned to 
processors in the same physical server. In this regard, the worst case scenario is that a failure 
of a physical server occurs during the time when the last tasks are being executed and the 
entire set of tasks have to be executed again. Here, the critical path refers to the longest 
execution path between the initial task (entry task) and the final task (end task) of the 
workflow, and this greatly influences the completion time of the DAG [10]. A one-hour delay 
in one of these tasks may immediately imply a one-hour delay on the workflow. Therefore, it is 
recommended that the tasks in the critical path should be distributed among processors 
residing in different PSs in order to improve the recovery time of a failure. As a trade-off, 
however, the communication overhead increases if no failure happens due to the extra 
communication between processors (Fig. 3a). 

In case, if a failure occurs in our proposed system, only the result of task v3 is lost since the 
results of task v1 and v2 are still stored in the other PS. Hence,  only task v3 needs executing 
again on the non-failure PS. This can reduce recovery time (Fig. 3b). However, it will become 
counter-effective, if tasks are distributed to multiple processors located on a high number of 
different PSs, the overhead will be significantly increased. Keeping this in mind, our paper 
tries to reduce that overhead as much as possible to address the following issues: Scheduling 
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tasks to globbally minimize the execution time in regular operation and, in case of a failure, to 
reduce recovery time while considering the network contention and the cost paid by CSCs. 

4. Problem Formulation and Solution 
Task scheduling [18] on a target system having a network topology is defined as the problem 
of allocating the tasks of an application to a set of processors that have diverse processing 
capabilities in order to minimize total execution time. Thus, the input of task scheduling 
includes a task graph and a process graph. The output is a schedule representing the 
assignment of a processor to each task node. 

4.1 Problem Formulation 
In this section, we first define the terms used and then formulate the problem. Eventually, a 
genetic method for task scheduling is presented to solve the above mentioned problems. 

 
 
 
 
 
 
 
 
 

         (a)                                                                              (b) 
Fig. 4. A sample DAG and a processor graph 

 
Definition 1. A task graph (e.g. as in Fig. 4a) is represented by a Directed Acyclic Graph 

(DAG), G =(V, E, w, c), where the set of vertices V ={v1,v2,...,vk} represents the set of parallel 
subtasks, and the directed edge eij = (vi,vj )∈E describes the communication between subtasks 
vi and vj, w(vi) associated with task vi ∈V represents its computation time and c(eij) represents 
the communication time between task vi and task vj with corresponding transferred data d(eij). 
We presume that a task vi without any predecessors, prec(vi)=0, is an entry  task ventry, and a 
task that does not have any successors, succ(vi) =0, is an end task vend . The task consists of 
workload wli, which delimits the amount of work processed with the computing resources. 
Besides, it also contains a set of preceding subtasks prec(vi) and a set of successive subtasks 
succ(vi) of task vi, ts(vi,Pj) denotes Start Time and w(vi, Pj) refers to the Execution Time of task 
vi∈V on processor Pj. Hence, the finish time of that task is given by tf(vi, Pj)= ts(vi, Pj)+ w(vi, 
Pj). 

Suppose that the following conditions are satisfied:  
Condition 1. A task cannot begin its execution until all of its inputs have been gathered 

sufficiently. Each task appears only once in the schedule. 
Condition 2. The ready time tready(vi, Pj) is the time that processor Pj completes its last 

assigned task and be ready to execute task vi. Therefore, 
                  

(1) 
( ) , ( )

( , ) max{ max ( ( , )), max ( ( ))},
y zi z i

ready i j f y j f ziv exec j e E v prec v
t v P t v P t e

∈ ∈ ∈
=



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 4, April 2015                                   1289 

 
where exec(j) is a set of tasks executed at processor Pj, tf(ezi) = tf(vz)+c(ezi) and prec(vi) is a set 
of preceding tasks of vi. 

Condition 3. Let [tA,tB]∈[0,∞] be an idle time interval on processor Pj in which no task is 
executed. A free task vi ∈ V can be scheduled on processor Pj within [tA,tB] if  

                                                                            (2)      
                                                             

 Definition 2. A processor graph TG=(N,D) demonstrated in Fig. 4b is a graph that 
describes the topology of a network between vertices (processors) that are cloud virtual 
machines (VMs). In this model, N is the finite set of vertices, and a directed edge dij ∈ D 
denotes a directed link from vertex Pi to vertex Pj with Pi,Pj∈N. Each processor Pi controls the 
processing rate pi and bandwidth bwi on the link connecting it to other processors. 

    Problem Definition 

In this section, we make some assumptions about the proposed method. Only output data 
from each task node is stored as a saved state. The state containing the data will be transferred 
to the processors that execute the child nodes of the completed task nodes. When a PS failure 
occurs, the saved state can be found in the ancestor task node. We suppose only a single stop 
failure of a physical server. When it occurs, all processors in the server simultaneously stop 
their execution. Let tt(S1+S2, vi) be the total time of an entire schedule S1+S2 with a failure 
happening at this task vi, S1 be a schedule before the failure, S2 be a schedule after the failure. 
Our purpose is trying to find and reallocate the last tasks in the critical path to multiple 
machines to minimize the entire schedule time and avoid the worst case. That means finding 
the schedule (S1 + S2) to 

4.2 Proposed approach 
Given a task graph G = (V, E, w, c) and a processor graph with network topology TG = (N,D), 
our method uses a genetic algorithm to choose the most appropriate schedule to execute the 
tasks. Among the various guided random techniques, genetic algorithms (GAs) are the most 
widely used for the task scheduling problem [12].  

 

 
                                                 Fig. 5. Genetic algorithm 

 
A genetic algorithm [7], illustrated in Fig. 5, is inspired by natural evolution. It is a robust 

search technique that allows a global high-quality solution to be derived from a large search 
space in polynomial time. This is in contrast to other algorithms that find only local optimal 
results. GA combines the best solutions from past searches with exploration of new regions of 
the solution space. In this algorithm, a feasible solution is represented using an individual 
(chromosome), that is a set of task assignments. The algorithm keeps a population of these 

max{ , ( , )} ( , ) .A ready i j i j Bt t v P w v P t+ ≤

1 2minimize max ( , )).
i

iv V
tt S S v

∈
+
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randomly generated individuals that evolves over generations. The quality of an individual in 
the population can be characterized by a fitness function whose value specifies the fitness of 
an individual compared to others in the population. Higher fitness level present better 
solutions.  Based on fitness, parents are selected to produce offspring for a new generation. 
The fitter individual has a better chance to reproduce. A new generation has the same number 
of individuals as the previous generation, which dies off once it is replaced with the new 
generation. By applying genetic operators, namely selection, crossover and mutation to a 
population of chromosomes, the quality of the chromosomes can be improved. As a result, a 
new population of individuals is produced. If well designed, this new population will converge 
to optimal solution. The following section describes in detail each operator of the genetic 
algorithm: 
o Representation 

Here, we choose each individual (as shown in Fig. 6a) in the population to illustrate a 
feasible solution to the problem and contain an array of task assignments. Each of the 
assignments consists of a task and a corresponding assigned processor. The time frames of 
each task in each individual, such as Earliest Start Time, Earliest Finish Time, and so on, can 
be changed to adjust those of its successive tasks.  These changes can lead to a very complex 
state during the genetic algorithm. Hence, our solution is to ignore the time frame while 
conducting genetic manipulation and assign a time slot to each assignment in order to obtain a 
feasible schedule later. 

 
 

 
                                             
 
 
 
 

                          
 
 
       (a)                                                                                (b) 
      Fig. 6. A one-dimensional array and two-dimensional array 
 

A one-dimensional array (Fig. 6a) may not be suitable for representing the workflow 
because it only defines which processor is allocated to each task and cannot show the order of 
task assignments on each processor. However, the execution order is very important since it 
significantly impacts the workflow execution [6]. We use a two-dimensional array to represent 
a schedule, as demonstrated in Fig. 6b. In this two-dimensional array, the order of tasks on 
each processor is shown.  During genetic manipulation, the two-dimensional array is 
transformed into a one-dimensional array. 
o Establishing the Initial Population 

The initial population is a set of individuals generated through a random heuristic. Each 
individual consists of pairs of tasks and processors on which the tasks are allocated. 
o Constructing a Fitness Function 

A fitness function can be used to characterize the quality of each individual in a population 
based on its optimization value. According to fitness value, parents are selected to generate 
new offspring. Since the purpose of our method is to minimize the schedule length while 
considering the network contention and the cost for cloud users, the fitness function has to rely 
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on EFT and cloud costs paid by CSCs. The following section illustrates establishment of EFT 
and the cost of task vi  on a processor from its start time as well as the ingredient costs. 

The start time of a task is defined when the last preceding task is completed. Thence, to 
determine that start time, the earliest idle interval [tA,tB] on processor Pj has to be searched and 
found to satisfy condition 2 and condition 3. As a result, the start time ts of task vi on processor 
Pj is set as: 

 
(3) 

      
 

Thus, the Earliest Start Time (EST) of a task vi executed on a processors Pj is computed as 
follows: 

 
(4) 

      
where            is the communication time between processors Pk and Pj to execute task vi and is 
defined as:  
 

(5) 
 

 
Here,        is the amount of input data stored at processor Pk and used for executing task vi 

and dozi is amount of outgoing data executed from Pk  then transferred to Pj. Therefore, Earliest 
Finish Time (EFT) of the task vi is calculated as:  

 
    (6) 

 
 
In addition, the algorithm also considers the cost paid by cloud customers for using cloud 

resources to execute the tasks. The cost C(vi,Pj) for task vi  executed at a VM Pj  is defined by: 
 

(7) 
   
In equation (7), each cost is calculated as follows: 
Cost of processing is expressed as: 
 

                                                                                                                                                                     (8)    
                                                                             

where c1 is the processing cost per time unit of workflow execution on processor Pj with 
processing rate pj . 

Let tmin be the finish time of the task which is completed first out of the parallel tasks and 
there is no available task after this one, c2 be the waiting cost per time unit and ti  be the finish 
time of the task vi. Then the cost of waiting time is as: 

 
                                         (9)    

 
Suppose that the amount of money per time unit for transferring outgoing data from 

processor Pj is c3, then the cost of communication time is defined as follows: 
 

{max( , ( , )), if 
0, otherwise( , ) ,A ready i j i entry

s i j

t t v P v v
t v P

≠=

( ),
( , ) max ( ( , )) max( ( )),

z i k k

kj
i j f z k iv prec v P N P N

EST v P t v P c e
∈ ∈ ∈

= +

( , ) ( , ) ( , ).i j i j i jEFT v P w v P EST v P= +

( , ) ( , ) ( , ) ( , ) ( , ) ( , )( , ) i j i j i j i j i j i jv P v P v P v P v P v P
i j proc wait comm disc str memC v P C C C C C C= + + + + +

( , )
1 * / ,i jv P

proc i jC c wl p=

( , )
2 min*( ).i jv P

wait iC c t t= −

( )kj
ic e

( ( ) ( ))

1 1( ) ( )*( )
z i

kj k
i i zi

v prec v exec k j k

c e di do
bw bw∈ ∩

= + +∑

k
idi
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                                                              (10)         

 
We assume that the distribution of disconnection events between a cloud and clients is a 

Poisson distribution with parameter µT, which represents the stability of the network. The 
expected number of arrivals over an interval of length τ is E[NT]= µT*τ . Let L be a random 
variable for the length of an offline event, µL be the mean length and c4  be the disconnection 
cost per unit time. Therefore, the expected duration of a disconnection event, which can affect 
the processing time of task vi, is µT*τ*µL . Hence, the cost of disconnection can be derived as: 

 
           (11) 

Let c5 be the storage cost per data unit and sti be the storage size of task vi on processor Pj . 
Then the storage cost of task vi on processor Pj is calculated as: 

 
(12) 

 
Further, we compute the cost of using the memory of processor Pj for task vi as follows: 
 

(13) 
 

where smem is the size of the memory used and c6 is the memory cost per data unit. 
Using this cost, we can calculate a fitness function that computes the tradeoff U(vi,Pj) 

between the cost and EFT as: 
 

(14) 
     

 
By considering the above fitness function that combines cost(vi,Pj) and EFT(vi,Pj), we can 

determine which individual in a population is the most appropriate to satisfy the function. This 
indicates that its combination of cost(vi,Pj) and EFT(vi,Pj)  should demonstrate the minimum 
value of the tradeoff U(vi,Pj). 

 
o Genetic Operators 
 Selection 

New individuals are selected according to their fitness described by the utility function’s 
tradeoff value after being compared to others in the population. The chance of being selected 
as a parent is proportional to fitness, and is in inverse ratio to the tradeoff value. An individual 
whose tradeoff value is lower, is better than one with a higher tradeoff value. The fittest is 
considered as successive generation evolves. An excessively strong fitness selection bias can 
lead to sub-optimal solution. 
 Crossover 

Crossover operates at an individual level and is used to generate new offspring from two 
randomly selected individuals (parents) in the current population in order to result in an even 
better individual in the subsequent generation. There are three methods of crossover: 
single-point crossover, two-point crossover, and uniform crossover, for all of which the 
chance of crossover is between 0.6 and 1 in general. As shown in Fig. 7a, 7b and 8, the 
crossover operator used is determined by the following rules: 

 

( , )
3

( ( ) ( ))
*( ) / .i j

z i

v P j
comm i zi j

v prec v exec j
C c di do bw

∈ ∩

= + ∑

( , )
4 *( * * ).i jv P

disc T LC c µ τ µ=

,

( , ) ( , )
( , ) ( * ).
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 One, two (or multiple) points are randomly chosen from selected parents.   
 These random points divide each individual into left and right sections.  
 Crossover then swaps the left (or the right) sections of the two individuals. 
 Two new offspring are created by recombining sections taken from two parents. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

       (a)                                                                                 (b) 
Fig. 7. Single-point crossover and two-point crossover 

 
Specially, a random mask containing bits (as illustrated in Fig. 8) is generated in uniform 

crossover. The mask determines which bits are copied from each parent. The bit represents the 
position of the elements in each individual, and the bit density in the mask determines how 
much materials is taken from each parent. 

 
 

 
 
 
 
 
 

Fig. 8. Uniform crossover 
 

 Mutation 
In genetic algorithms, a mutation generates new offspring from a single parent in the 

current population. Mutation maintains the diversity of individuals by exploring new and 
better genes than were previously considered in order to prevent a combination of all solutions 
in the population converging into a local optimum of solved problems as crossover can only 
explore the current combinations in the gene pool. However, mutation rates are low as the 
chance of mutation in a specific individual is low (approximately 0.001). There are two types 
of mutations: a replacing mutation and a swapping mutation. 

 
 
 

 
       (a)                                                                                (b) 

Fig. 9. Replacing mutation and swapping mutation 
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The purpose of the replacing mutation is to reallocate a substitute processor to a random 
task in an individual. The selected processor is also randomly chosen and has enough capacity 
to execute the task. Fig. 9a illustrates the replacing mutation. In this figure, processor P2 
allocated to task v4 is replaced by processor P4. In contrast, the swapping mutation changes the 
execution order of independent tasks on the same processor in an individual for the same time 
slot. The example of swapping mutation in Fig. 9b shows that task v5 occupies the initial time 
slot of task v0. 

To verify the performance of our proposed genetic algorithm based approach, we have also 
designed several other task scheduling algorithms. These algorithms minimize the schedule 
length of the workflow or lessen the cloud cost paid by CSCs.  Algorithm 1 is Greedy for Cost 
algorithm, where each task of the workflow is assigned to a processor which minimizes cost 
greedily for Cloud resources to execute that task. In algorithm 2, Contention aware Scheduling 
[11] aims to create a schedule based on EFT pondering on network contention. Interleaved 
method in algorithm 3 spreads tasks to professors of all PMs as much as possible. Meanwhile, 
algorithms 4,5 show that our approach takes into account both network contention and the 
cloud cost as well as the tradeoff between them. Moreover, our method also tries to get a 
global optimal scheduling of the workflow to reduce recovery time in case of failure. 

 
 

Algorithm 1. Greedy for cost algorithm 
Input    : Task graph G = (V, E, w, c) , processor graph TG = (N,D) 
Output : A new task scheduling 
Function greedyForCostScheduling(G, TG) { 
{ 
      Sort task vn ∈V into list L according to priority 
      for each vn ∈L 
      { 
 Find the best processor Pj which minimize the execution cost of task vn  

Assign vn on Pj 
      } 
      return a new task scheduling 
} 
 
 
Algorithm 2. Network contention aware scheduling algorithm 
Input    : Task graph G = (V, E, w, c) , processor graph TG = (N,D) 
Output : A new task scheduling 
Function contentionAwareScheduling (G, TG) { 
{ 
      Sort task vn ∈V into list L according to priority 
      for each vn ∈L 
      { 
 Find the best processor Pj which allows EFT of vn, taking account of network bandwidth usage; 

Assign vn on Pj; 
      } 
      return a new task scheduling; 
} 
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Algorithm 3. Interleaved scheduling algorithm 
Input    : Task graph G = (V, E, w, c) , processor graph TG = (N,D) 
Output : A new task scheduling 
Function interleavedScheduling (G, TG) { 
{ 
      Sort task vn ∈V into list L according to priority 
      Spread tasks to professors of all PSs as much as possible and processor Pj executing task vn task has 
to allow EFT of vn 
      return a new task scheduling 
} 
 
Algorithm 4. Cost-Time aware Genetic scheduling algorithm 
Input    : Task graph G = (V, E, w, c) , processor graph TG = (N,D) 
Output : A new task scheduling 
Function geneticScheduling (G, TG) { 
{ 
      Generate initial population 
      Compute fitness of each individual according to the equation (14) 
      repeat // New generation 
           for population_size   
           { 
    Select two parents from old generation 

   Recombine parents for two offspring 
   Compute fitness of offspring 
   Insert offspring in new generation 

           }       
      until population has converged 
      return a new task scheduling 
} 
 
Algorithm 5. Minimum recovery time  approach 
Input    : Task graph G = (V, E, w, c) , processor graph TG = (N,D) 
Output : A new task scheduling 
Function minimizeRecoveryTime (G, TG)  
{ 
      for (i =1; i<=number of tasks in critical path)  
      { 
   
              S1 = schedule generated by Cost-Time aware Genetic scheduling algorithm (Algorithm 4) 
              for (failtask = 1  to number of all tasks)  
 { 
        //Assuming failure happens at failtask 
        Find set T of all tasks executed after recovery if task failtask fail 
        S2 = schedule is generated by Algorithm 4 with input is T and available processors  
            
             } 
 int index = 0 
 Criticalpath[index++] =  
      } 
      return the shortest element of the Criticalpath 
} 

Set ? ( 1 2)S S S S= ∪ ∪

max ( )
v V

scheduleLength S
∈

S =∅
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5. Implementation and Analysis 
In this section, we present experiments that analyze many aspects of our approach. To justify 
the efficiency of the proposed approach, the Cost-Time aware Genetic scheduling algorithm 
(CTaG), numerical simulations are used to evaluate it and compare its performance with those 
of other methods, in terms of monetary cost or network bandwidth. The compared methods 
include the well-known Contention-aware Scheduling (CaS) algorithm [11], the Greedy for 
Cost algorithm (GfC), the Interleaved Scheduling method (IS) and a Time aware Genetic 
scheduling (TaG) algorithm [23] keeping in view only processing time of the system.  

5.1 Experimental Settings 
All the parameters are different task graphs G=(V, E, w, c) with the increase of the matrix sizes 
(10-60) and heterogeneous processor graphs TG=(N,D) which is a combination between 30 
VMs with the different configurations located at the local system of CSCs for the above 
algorithms as list in Table 2. We developed the simulations in Java with JDK-7u7-i586 and 
Netbeans-7.2 using CloudSim [16]. It is a framework for modeling and simulation of cloud 
computing infrastructures and services.  In our simulation, we describe MI as Millions of 
Instructions and denote MIPS as Million Instructions per Second to represent the processing 
capacity of processors. Moreover, we define a sample of processing cost in Table 3, data 
transmission cost in Table 4, waiting cost and disconnection one in Table 5. It is obvious that 
the processing cost and transmission cost are inversely proportional to processing time and 
transmission time correspondingly. The I/O data of the task has a size from 100 to 500 MB. 
 

Table 2. Characteristics of the target system 
 

Parameter Value 
Network LAN 

Topology model Fully Connected 
Operating system Windows 7 professional 

Number of processors [5, 30] 
Number of tasks [10, 90] 
Processing rate [10, 750] MIPS 

Bandwidth 10, 100, 512, 1024 Mbps 
 

Table 3. Processing rate and corresponding cost for executing a task at processor Pj 
 

Processing rate (MIPS) Cost per time unit 
[10, 50) 0.6 

[50, 125) 1.7 
[125, 250) 3.6 
[250, 500) 7.5 
[500, 750) 11 

 
Table 4. Cost of data transmission 

 

Bandwidth (Mbps) Cost per time unit 
10 0.01 

100 0.1 
512 0.52 

1024 1.024 
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Table 5. Other costs 
 

Cost Cost per time unit 
Cost of waiting time [0.1, 0.4] 

Cost of a disconnection time [0,02, 0.2] 

5.2 Experimental Results 
The following figures show the simulation results of our proposed genetic method for task 
scheduling compared against other scheduling techniques. In the following figures, it is 
obvious to see that there are some differences between the simulated results.  Fig. 10a shows 
that, in terms of schedule length, in an environment with no failure, as the number of tasks 
increases, our method is 27% better than GfC and 15% better than IS due to the extra 
communication between processors. This is because the proposed method can determine 
optimal schedules while considering network contention. Additionally, in Fig. 10b, when the 
system has a failure that increases the recovery time, some physical machines have to restart, 
which increases processing time in the workflow because some task nodes' results are lost and 
must be reacquired. Our proposal produces a workflow schedule with better performance than 
others regardless of the number of tasks. Particularly, it achieves a greater than 13% increase 
in speed compared with the TaG and more than 38%, 18% increase compared with GfC, CaS, 
respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

                              (a)                                                                              (b) 
Fig. 10. Schedule length comparison without failure (a) and with failure (b) 

 
 
 
 
 
 
 
 
 
 
 
 
 

                                (a)                                                                      (b) 
Fig. 11. Cost comparison without failure (a) and with failure (b) 
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 Regarding the monetary cost paid by CSCs (as illustrated in Fig. 11a), it has been 
observed that in case of no failure, TaG and CaS have the highest cost, while GfC has the 
lowest cost but its performance is not good comparatively. The CTaG has a economic 
advantage compared with IS, which means that its effectiveness increases together with 
monetary cost. In the meantime, our solution is balanced between schedule length and cloud 
cost. As a matter of fact, when compared with TaG, our method can save about 19% cost for 
CSCs while performance reduction is not greater than 17%. Nonetheless, when a failure 
occurs, the graph in Fig. 11b shows that, when the number of tasks increases, TaG and CaS 
require the highest monetary cost, the GfC is intermediate and the proposed method has the 
lowest cost. Notably, the cost of our approach is 24%, 20% less than the cost of the TaG, CaS, 
respectively, and saves 17% when compared with the GfC cost. 

 
 
 

 
 
 
 
 
 
 
 
 
 
                        (a)                                                                                     (b) 
                 Fig. 12. Schedule length (a) and cost (b) with numbers of processors 
 

We next measured the effect of increasing number of processors on the cloud cost and the 
schedule length only in CTaG with a fixed number of tasks. The results reflected in Fig. 12a 
and 12b indicate that more processors result in better system performance but higher cost. It is 
highly noticeable to find that the cost goes up from 300500 G$ to 325000 G$ as the number of 
processors increases from 15 to 20. 
 
 

 
 
 
 
 
 
 
 
 
 
 
                        (a)                                                                                    (b) 

Fig. 13. Schedule length (a) and cost (b) with numbers of individuals 
 
Further, when the number of individuals is altered from 20 to 90 (Fig. 13a, 13b), we 

witness that the increase in the population size does not significantly affect the execution cost 
of the workflow while probability of finding a faster solution is higher. The cost just fluctuates 
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between 55000 and 60000 G$. On the other hand, scheduling time exhibits a downward trend 
from approximately 80 minutes to around 50 minutes. Finally, we observe the performance of 
the CTaG with different number of generations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
                        (a)                                                                                     (b)              

     Fig. 14. Schedule length (a) and cost (b) with numbers of generations 
 
Similar to the above simulation that regards the number of individuals, results from the Fig. 

14a and 14b show that the schedule length of the workflow is reduced with slight decrease in 
the execution cost when the number of the generations increases. In particular, the schedule 
length drops dramatically from more than 290 minutes to 200 minutes when the number of 
generations increases from 20 to 40. This is because each individual selected considers the 
tradeoff between cloud cost and execution time. 

5. Conclusion 
In our study, we have presented an optimization and node recovery model for cloud computing, 
to improve the reliability of cloud services. We modeled our work through genetic task 
scheduling algorithm. The presented work can be very useful for large amount of data. The 
proposed model works in such a way that it distributes the tasks among the computing nodes in 
a datacenter on the basis of minimal scheduling length, hence, globally optimizing the overall 
process. In case of failure, the system is returned to its previous state in minimum possible 
time. Our model is cost-effective, since it considers the network bandwidth and the amount of 
money user has to pay for the services and the tradeoff between them. The presented 
simulation results and comparison with existing works justifies our model’s performance and 
efficiency. We intend to extend our work with more diverse and challenging scenarios to 
further extensively check the reliability of the system. 
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