
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 4, Apr.2015 1282
Copyright ⓒ 2015 KSII

CTaG: An Innovative Approach for
Optimizing Recovery Time in Cloud

Environment

Pham Phuoc Hung1, Mohammad Aazam2 and Eui-Nam Huh1
 Department of Computer Engineering, Kyung Hee University

Yongin-si, South Korea
[e-mail: {hungpham, johnhuh}@khu.ac.kr1, aazam@ieee.org2]

*Corresponding author: Eui-Nam Huh

Received August 4, 2014; revised November 25, 2014; revised January 29, 2015; accepted March 12, 2015;
published April 30, 2015

Abstract

Traditional infrastructure has been superseded by cloud computing, due to its cost-effective
and ubiquitous computing model. Cloud computing not only brings multitude of opportunities,
but it also bears some challenges. One of the key challenges it faces is recovery of computing
nodes, when an Information Technology (IT) failure occurs. Since cloud computing mainly
depends upon its nodes, physical servers, that makes it very crucial to recover a failed node in
time and seamlessly, so that the customer gets an expected level of service. Work has already
been done in this regard, but it has still proved to be trivial. In this study, we present a
Cost-Time aware Genetic scheduling algorithm, referred to as CTaG, not only to globally
optimize the performance of the cloud system, but also perform recovery of failed nodes
efficiently. While modeling our work, we have particularly taken into account the factors of
network bandwidth and customer’s monetary cost. We have implemented our algorithm and
justify it through extensive simulations and comparison with similar existing studies. The
results show performance gain of our work over the others, in some particular scenarios.

Keywords: Cloud computing, task scheduling, big data, recovery time, offloading

This research was supported by Next-Generation Information Computing Development Program through the
National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future Planning
(2010-0020725). The corresponding author is professor Eui-Nam Huh.

http://dx.doi.org/10.3837/tiis.2015.04.001 ISSN : 1976-7277

mailto:johnhuh%7D@khu.ac.kr

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 4, April 2015 1283

1. Introduction

Cloud computing (CC) has emerged as a promising as well as inevitable technology [9],
deemed as an ideal solution to handle the requirements of today’s increasing demands, more
specifically, in terms of availability, total cost of ownership (TCO), and time to value (TTV)
[20, 21]. Number of enterprises, specially large-scale businesses, have been adopting CC,
resulting in popularity of cloud-based services. For highly computationally complex business
processes, CC is becoming a necessity.

To achieve high performance, reliability, and availability of cloud services, thousands of
servers coordinate with each other for efficient task scheduling and in the end, user satisfaction
[4]. While achieving this, at times, computing nodes in a datacenter may fail, causing
degradation of performance. Although, it is not very common for a server to face such
situation, but across all devices in the datacenter, the effect can be very diverse [5]. Failure of
nodes can not only adversely affect the performance, but also, reliability of services being
provided [2]. Financial damage may be up to millions of dollars, if the system is not recovered
in time [1]. On the other hand, customers may lose their trust, resulting in huge financial loss
for the service provider. Service providers would always like their customers to be loyal with
them and this depends mainly upon the quality and integrity of services.

Other than the major facilities, like affordable cost, quick deployment, scalability, etc.,
cloud computing comes with, resiliency is considered to be a vital feature of it. It is very
important to bring back the infrastructure into its original working state as soon as possible.
Availability of the system and quick recovery from a failed state determines the level of trust
of customers. That is why, in case of any failure, the system is ought to be brought back to
normal seamlessly. In respect of recovery from failure, research activities have been focusing
on different methodologies to minimize recovery time in high performance computing.
Methodologies are mainly categorized into two: stochastic optimization [22, 23] and
heuristic-based optimization [8, 10]. Heuristic approach solves the problem efficiently, but
compromising on the performance. On the other hand, stochastic approach has a
comparatively better performance, keeping in view the reliability of solution [6]. Both these
approaches have their pros and cons, but overall, none of these approaches are preferable,
since they do not take into account the network condition and monetary cost customers have to
pay. In our work, we have tried our best to keep the advantages of both of these approaches
and overcome their limitations. We present an efficient and cost-effective method, based on
genetic algorithm, called CTaG, for task scheduling to globally optimize cloud-based system
performance and reduce recovery time for physical server falures in cloud computing. Besides
overall efficiency and reliability, we have considered network condition and monetary cost
while designing our system. In designing our system, we foresee that the overall processing
time of the cloud system can be significantly reduced and user experience and quality of
service can be improved.

We have evaluated our methodology through extensive simulations to justify its efficiency
and performance. Comparison with the existing approaches proves the edge our approach has
over the others. Our approach minimized both recovery time of failed nodes and monetary cost
of customers, with a lower overhead, as compared to other approaches. As a result, a better
efficiency per cost (EC) ratio is achieved. We believe that our approach can be very useful for
the discussed situations, especially for small and medium sized business models, working on
cloud based services.

1284 Hung et al.: CTaG: An Innovative Approach for Optimizing Recovery Time in Cloud Environment

The organization of this paper is in such a way that section 2 discusses already done work
in this regard. Section 3 presents motivating scenarios and importance of our approach. We
present our methodology in section 4. Implementation and evaluation are presented in section
5. Section 6 concludes our paper.

2. Related Work
There is a survey of 584 individuals in U.S. organizations who have responsibility for data
center operations. Among those organizations which experienced a loss of primary utility
power, 91 percent reported unplanned outages [13]. Unplanned data center outages present a
difficult and costly challenge for organizations. Therefore, to deliver better services to
customers, cloud-based infrastructures are expected to come up with failure-tolerance and
resiliency, which implies that those systems can be quickly recovered from failure because of
the outages and restored to normal working state, especially for distributed systems. In those
heterogeneous systems, scheduling algorithms play a key role in obtaining high performance.
There have been numerous studies which attempt to solve task scheduling problems, where the
sequence of the tasks (workflow) is popularly presented by a directed acyclic graph (DAG), as
shown in Fig. 4. In [7], authors propose task scheduling approaches for assigning processors to
task graph templates prepared in advance. The limitation of these methods is that they do not
consider the network contention. They assume that the network has a perfect communication,
and there is no limited bandwidth. Sinnen et al. [8] present an efficient task scheduling method
based on network contention. This proposal has two steps: firstly, each task is set a priority
based on the upward value of this task in the workflow; secondly, choose the most appropiate
processor that minimizes the completion time of this priority based task. Anyhow, the method
does not look attentively at monetary cost paid by cloud service customers (CSCs), for use of
the cloud resources.

In heterogeneous CC environment, despite numerous efforts, task scheduling remains one
of the most challenging problems [6]. Good performance of workflow and satisfaction of a
budget constraint are typical criteria for multitask scheduling. Authors in [28] introduce a
cost-efficient approach to select the most appropriate system (private or public cloud) to
execute the workflow. Selection also depends on the possibility of meeting the deadline of
each workflow as well as the cost savings. L.Zeng et al. in [3] propose budget conscious
scheduling Comparative Advantage (CA) function to satisfy the strict budget constraint. In its
first phase, each of tasks is assigned to the best VM whose CA1 value is maximum to get a
worthy tradeoff between cost saving and efficiency. In the second phase, budget constraint is
used in the CA2 function to evaluate the improvement of task reassignment to another VM on
cost and performance. Notwithstanding CA is hard to be applied to the large-scale workflows.
In the meantime, J. Li et al. in [11] present a scheduling algorithm CCSH to schedule the
application of large graph processing with considering both cost and schedule length. The
input cost-concious factor of this method is the cloud cost and used as a weight to calculate the
earliest finish time EFT of each task. However, global optimality and tradeoff between cost
and schedule length are not properly addressed in these approaches.

Recently, some GAs have been developed for solving the globlal optimal problem in task
scheduling. The authors in [22] propose approaches using genetic processes to find multiple
solutions faster and ensure global optimal usage of the processing system. Sachi et al. [23]
develope a method based on genetic algorithm (GA) to find an optimal scheduling, which
shows to be efficient to discover optimal solutions more than Heterogeneous Earliest Finish
Time (HEFT) with same length of problem size, focusing on the quality of solution and effect

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 4, April 2015 1285

of muation probability on the performance of GA. Mohammad A. et al. [26] propose a GA
based method which not only considers the deadline time in sorting the tasks in the first
population, but also includes the maximum computational time of individuals in the
population to define the priority level of these tasks. Hadis H. et al. [25] exhibit a node
duplication genetic algorithm based technique to avoid some unnecessarily replicated node
without any negative affect on its schedule length for minimizing inter processor traffic
communication. Yujia et al. [27] show a new scheduling algorithm according to a fitness
adaptive algorithm-job spanning time adaptive genetic algorithm, so as to enhance the overall
performance of the cloud computing environment. Nonetheless, in these proposals, monetory
cost and failure of computing devices are not considered.

Zhang et al. in [19], and Y.Gu et al. in [14] introduce a solution to recover from failure
according to check-pointing in stream processing system. As such, when the system has
failure, it finds the closest ancestor node which is not impacted by failure to resume the results
saved in that node. The authors in [10] come up with a scheme to reduce the recovery time in
case of failure, but they do not contemplate the cost paid by users. Similar to our approach,
Huynh T.T.B in [24] proposes a genetic based method that miminizes the processing against a
failure in a network system. But monetory cost is not considered in this solution.

For ease of understanding, we present an overview of common scheduling approaches
along with ours in Table 1.

Table 1. Overview of the existing scheduling approaches and ours

Algorithm Target System
Minimum
Schedule
Length

Minimum
Cost

Trade
off

Minimum
Recovery

Time

Global
Optimality

H. Topcuoglu et al.
[16] Heterogeneous Yes No No No No

Oliver Sinnen et al.
[8] Cloud Yes No No No No

Gonzalo et al. [15] Cloud Yes No No No No
Louis C. et al. [17] Heterogeneous Yes No No No No
L.Zeng et al. [3] Cloud Yes Yes Yes No No
Ruben et al. [28] Cloud Yes Yes Yes No No
J. Li et al. [11] Heterogeneous Yes Yes Yes No No
Shohei G. et al.
[10]

Multicore
processor Yes No No Yes No

Zhang et al. [19] Stream
processing Yes No No Yes No

Tashniba K. et al.
[22]

Multicore
processor Yes No No No Yes

Sachi et al. [23] Heterogeneous Yes No No No Yes

Hadis H. et al. [25] Multicore
processor Yes No No No Yes

Mohammad A. et
al. [26]

Multicore
processor Yes No No No Yes

Yujia et al. [27] Cloud Yes No No No Yes
Huynh T.T.B [24] Homogeneous Yes No No Yes Yes
Our approach Cloud Yes Yes Yes Yes Yes

1286 Hung et al.: CTaG: An Innovative Approach for Optimizing Recovery Time in Cloud Environment

As shown in Table 1, a desirable scheduling approach should consider all of the four factors
including globally optimal execution time, network contention, cost of using cloud services
and recovery time in the case of physical failure of servers. That can satisfy QoS as well as
increase reliability and the reputation of the cloud provider. In this paper, we aim to provide a
scheduling scheme which takes these factors into account and develop an algorithm to reduce
the recovery time in the case of failure of a physical server in a data center. The main
contribution of this work is the development of a genetic algorithm to determine the global
optimal schedule.

3. Motivation Scenario

In this section, we discuss the importance and applicability of our work, by presenting relevant
scenario. Fig. 1 illustrates cloud datacenter, having several physical servers (PSs), represented
by bounded rectangles. Each of which may not have enough capacity to host all processors
(rectangles), functioning as virtual machines (VMs), to fulfill user requirements in solving
some computationally intensive tasks. These processors can communicate with each other via
a network interface (gray circle). In one physical server, even if there is enough capacity, it is
generally not recommended to have all the processors hosted in the same PS in order to avoid
complete service unavailability in the case of power outage. Therefore, it is suggested, that
tasks should be divided into smaller subtasks which are executed by processors (or VMs),
located on different physical servers at the cloud provider side. Each of those processors can
execute tasks independently.

Fig. 1. A typical data center

Fig. 2. An example of existing task scheduling (a) and recovery solution (b)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 4, April 2015 1287

One network interface is shared among the scheduled processors. Due to the high stability
of the network among processors in the same local PS compared with the Internet, the average
data transfer rate of internal communication is always higher than that of external one. In this
regard, existing schedulers try to utilize this high speed link, resulting in many dependent tasks
being assigned to processors hosted in the same PS. When a failure occurs, dependent tasks
tend to be destroyed at a time, requiring a more time consuming process for recovery.

In Fig. 2a an example is illustrated, regarding task scheduling created by an existing
approach which does not consider the possibility of the system failure. In this scheduler, task
v1, v2, and v3 are assigned to processors P1 and P2 that are located in the same PS in order to
utilize the high speed communication between processors. After task v1 and v2 are executed in
parallel, task v3 can be processed on processor P1. However, if the PS on which P1 and P2
reside fails while task v3 is being executed, the results of all task nodes, are lost. If we want to
recover the results, all the tasks v1, v2, and v3 have to be performed again on another physical
server. This may double the execution time (Fig. 2b).

Fig. 3. An example of our scheduling proposal (a) and its recovery solution (b)

Let us now discuss another situation where all tasks in the critical path are assigned to
processors in the same physical server. In this regard, the worst case scenario is that a failure
of a physical server occurs during the time when the last tasks are being executed and the
entire set of tasks have to be executed again. Here, the critical path refers to the longest
execution path between the initial task (entry task) and the final task (end task) of the
workflow, and this greatly influences the completion time of the DAG [10]. A one-hour delay
in one of these tasks may immediately imply a one-hour delay on the workflow. Therefore, it is
recommended that the tasks in the critical path should be distributed among processors
residing in different PSs in order to improve the recovery time of a failure. As a trade-off,
however, the communication overhead increases if no failure happens due to the extra
communication between processors (Fig. 3a).

In case, if a failure occurs in our proposed system, only the result of task v3 is lost since the
results of task v1 and v2 are still stored in the other PS. Hence, only task v3 needs executing
again on the non-failure PS. This can reduce recovery time (Fig. 3b). However, it will become
counter-effective, if tasks are distributed to multiple processors located on a high number of
different PSs, the overhead will be significantly increased. Keeping this in mind, our paper
tries to reduce that overhead as much as possible to address the following issues: Scheduling

1288 Hung et al.: CTaG: An Innovative Approach for Optimizing Recovery Time in Cloud Environment

tasks to globbally minimize the execution time in regular operation and, in case of a failure, to
reduce recovery time while considering the network contention and the cost paid by CSCs.

4. Problem Formulation and Solution
Task scheduling [18] on a target system having a network topology is defined as the problem
of allocating the tasks of an application to a set of processors that have diverse processing
capabilities in order to minimize total execution time. Thus, the input of task scheduling
includes a task graph and a process graph. The output is a schedule representing the
assignment of a processor to each task node.

4.1 Problem Formulation
In this section, we first define the terms used and then formulate the problem. Eventually, a
genetic method for task scheduling is presented to solve the above mentioned problems.

 (a) (b)
Fig. 4. A sample DAG and a processor graph

Definition 1. A task graph (e.g. as in Fig. 4a) is represented by a Directed Acyclic Graph

(DAG), G =(V, E, w, c), where the set of vertices V ={v1,v2,...,vk} represents the set of parallel
subtasks, and the directed edge eij = (vi,vj)∈E describes the communication between subtasks
vi and vj, w(vi) associated with task vi ∈V represents its computation time and c(eij) represents
the communication time between task vi and task vj with corresponding transferred data d(eij).
We presume that a task vi without any predecessors, prec(vi)=0, is an entry task ventry, and a
task that does not have any successors, succ(vi) =0, is an end task vend . The task consists of
workload wli, which delimits the amount of work processed with the computing resources.
Besides, it also contains a set of preceding subtasks prec(vi) and a set of successive subtasks
succ(vi) of task vi, ts(vi,Pj) denotes Start Time and w(vi, Pj) refers to the Execution Time of task
vi∈V on processor Pj. Hence, the finish time of that task is given by tf(vi, Pj)= ts(vi, Pj)+ w(vi,
Pj).

Suppose that the following conditions are satisfied:
Condition 1. A task cannot begin its execution until all of its inputs have been gathered

sufficiently. Each task appears only once in the schedule.
Condition 2. The ready time tready(vi, Pj) is the time that processor Pj completes its last

assigned task and be ready to execute task vi. Therefore,

(1)
() , ()

(,) max{ max ((,)), max (())},
y zi z i

ready i j f y j f ziv exec j e E v prec v
t v P t v P t e

∈ ∈ ∈
=

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 4, April 2015 1289

where exec(j) is a set of tasks executed at processor Pj, tf(ezi) = tf(vz)+c(ezi) and prec(vi) is a set
of preceding tasks of vi.

Condition 3. Let [tA,tB]∈[0,∞] be an idle time interval on processor Pj in which no task is
executed. A free task vi ∈ V can be scheduled on processor Pj within [tA,tB] if

 (2)

 Definition 2. A processor graph TG=(N,D) demonstrated in Fig. 4b is a graph that
describes the topology of a network between vertices (processors) that are cloud virtual
machines (VMs). In this model, N is the finite set of vertices, and a directed edge dij ∈ D
denotes a directed link from vertex Pi to vertex Pj with Pi,Pj∈N. Each processor Pi controls the
processing rate pi and bandwidth bwi on the link connecting it to other processors.

 Problem Definition

In this section, we make some assumptions about the proposed method. Only output data
from each task node is stored as a saved state. The state containing the data will be transferred
to the processors that execute the child nodes of the completed task nodes. When a PS failure
occurs, the saved state can be found in the ancestor task node. We suppose only a single stop
failure of a physical server. When it occurs, all processors in the server simultaneously stop
their execution. Let tt(S1+S2, vi) be the total time of an entire schedule S1+S2 with a failure
happening at this task vi, S1 be a schedule before the failure, S2 be a schedule after the failure.
Our purpose is trying to find and reallocate the last tasks in the critical path to multiple
machines to minimize the entire schedule time and avoid the worst case. That means finding
the schedule (S1 + S2) to

4.2 Proposed approach
Given a task graph G = (V, E, w, c) and a processor graph with network topology TG = (N,D),
our method uses a genetic algorithm to choose the most appropriate schedule to execute the
tasks. Among the various guided random techniques, genetic algorithms (GAs) are the most
widely used for the task scheduling problem [12].

 Fig. 5. Genetic algorithm

A genetic algorithm [7], illustrated in Fig. 5, is inspired by natural evolution. It is a robust

search technique that allows a global high-quality solution to be derived from a large search
space in polynomial time. This is in contrast to other algorithms that find only local optimal
results. GA combines the best solutions from past searches with exploration of new regions of
the solution space. In this algorithm, a feasible solution is represented using an individual
(chromosome), that is a set of task assignments. The algorithm keeps a population of these

max{ , (,)} (,) .A ready i j i j Bt t v P w v P t+ ≤

1 2minimize max (,)).
i

iv V
tt S S v

∈
+

1290 Hung et al.: CTaG: An Innovative Approach for Optimizing Recovery Time in Cloud Environment

randomly generated individuals that evolves over generations. The quality of an individual in
the population can be characterized by a fitness function whose value specifies the fitness of
an individual compared to others in the population. Higher fitness level present better
solutions. Based on fitness, parents are selected to produce offspring for a new generation.
The fitter individual has a better chance to reproduce. A new generation has the same number
of individuals as the previous generation, which dies off once it is replaced with the new
generation. By applying genetic operators, namely selection, crossover and mutation to a
population of chromosomes, the quality of the chromosomes can be improved. As a result, a
new population of individuals is produced. If well designed, this new population will converge
to optimal solution. The following section describes in detail each operator of the genetic
algorithm:
o Representation

Here, we choose each individual (as shown in Fig. 6a) in the population to illustrate a
feasible solution to the problem and contain an array of task assignments. Each of the
assignments consists of a task and a corresponding assigned processor. The time frames of
each task in each individual, such as Earliest Start Time, Earliest Finish Time, and so on, can
be changed to adjust those of its successive tasks. These changes can lead to a very complex
state during the genetic algorithm. Hence, our solution is to ignore the time frame while
conducting genetic manipulation and assign a time slot to each assignment in order to obtain a
feasible schedule later.

 (a) (b)
 Fig. 6. A one-dimensional array and two-dimensional array

A one-dimensional array (Fig. 6a) may not be suitable for representing the workflow
because it only defines which processor is allocated to each task and cannot show the order of
task assignments on each processor. However, the execution order is very important since it
significantly impacts the workflow execution [6]. We use a two-dimensional array to represent
a schedule, as demonstrated in Fig. 6b. In this two-dimensional array, the order of tasks on
each processor is shown. During genetic manipulation, the two-dimensional array is
transformed into a one-dimensional array.
o Establishing the Initial Population

The initial population is a set of individuals generated through a random heuristic. Each
individual consists of pairs of tasks and processors on which the tasks are allocated.
o Constructing a Fitness Function

A fitness function can be used to characterize the quality of each individual in a population
based on its optimization value. According to fitness value, parents are selected to generate
new offspring. Since the purpose of our method is to minimize the schedule length while
considering the network contention and the cost for cloud users, the fitness function has to rely

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 4, April 2015 1291

on EFT and cloud costs paid by CSCs. The following section illustrates establishment of EFT
and the cost of task vi on a processor from its start time as well as the ingredient costs.

The start time of a task is defined when the last preceding task is completed. Thence, to
determine that start time, the earliest idle interval [tA,tB] on processor Pj has to be searched and
found to satisfy condition 2 and condition 3. As a result, the start time ts of task vi on processor
Pj is set as:

(3)

Thus, the Earliest Start Time (EST) of a task vi executed on a processors Pj is computed as
follows:

(4)

where is the communication time between processors Pk and Pj to execute task vi and is
defined as:

(5)

Here, is the amount of input data stored at processor Pk and used for executing task vi

and dozi is amount of outgoing data executed from Pk then transferred to Pj. Therefore, Earliest
Finish Time (EFT) of the task vi is calculated as:

 (6)

In addition, the algorithm also considers the cost paid by cloud customers for using cloud

resources to execute the tasks. The cost C(vi,Pj) for task vi executed at a VM Pj is defined by:

(7)

In equation (7), each cost is calculated as follows:
Cost of processing is expressed as:

 (8)

where c1 is the processing cost per time unit of workflow execution on processor Pj with
processing rate pj .

Let tmin be the finish time of the task which is completed first out of the parallel tasks and
there is no available task after this one, c2 be the waiting cost per time unit and ti be the finish
time of the task vi. Then the cost of waiting time is as:

 (9)

Suppose that the amount of money per time unit for transferring outgoing data from

processor Pj is c3, then the cost of communication time is defined as follows:

{max(, (,)), if
0, otherwise(,) ,A ready i j i entry

s i j

t t v P v v
t v P

≠=

(),
(,) max ((,)) max(()),

z i k k

kj
i j f z k iv prec v P N P N

EST v P t v P c e
∈ ∈ ∈

= +

(,) (,) (,).i j i j i jEFT v P w v P EST v P= +

(,) (,) (,) (,) (,) (,)(,) i j i j i j i j i j i jv P v P v P v P v P v P
i j proc wait comm disc str memC v P C C C C C C= + + + + +

(,)
1 * / ,i jv P

proc i jC c wl p=

(,)
2 min*().i jv P

wait iC c t t= −

()kj
ic e

(() ())

1 1() ()*()
z i

kj k
i i zi

v prec v exec k j k

c e di do
bw bw∈ ∩

= + +∑

k
idi

1292 Hung et al.: CTaG: An Innovative Approach for Optimizing Recovery Time in Cloud Environment

 (10)

We assume that the distribution of disconnection events between a cloud and clients is a

Poisson distribution with parameter µT, which represents the stability of the network. The
expected number of arrivals over an interval of length τ is E[NT]= µT*τ . Let L be a random
variable for the length of an offline event, µL be the mean length and c4 be the disconnection
cost per unit time. Therefore, the expected duration of a disconnection event, which can affect
the processing time of task vi, is µT*τ*µL . Hence, the cost of disconnection can be derived as:

 (11)

Let c5 be the storage cost per data unit and sti be the storage size of task vi on processor Pj .
Then the storage cost of task vi on processor Pj is calculated as:

(12)

Further, we compute the cost of using the memory of processor Pj for task vi as follows:

(13)

where smem is the size of the memory used and c6 is the memory cost per data unit.
Using this cost, we can calculate a fitness function that computes the tradeoff U(vi,Pj)

between the cost and EFT as:

(14)

By considering the above fitness function that combines cost(vi,Pj) and EFT(vi,Pj), we can

determine which individual in a population is the most appropriate to satisfy the function. This
indicates that its combination of cost(vi,Pj) and EFT(vi,Pj) should demonstrate the minimum
value of the tradeoff U(vi,Pj).

o Genetic Operators
 Selection

New individuals are selected according to their fitness described by the utility function’s
tradeoff value after being compared to others in the population. The chance of being selected
as a parent is proportional to fitness, and is in inverse ratio to the tradeoff value. An individual
whose tradeoff value is lower, is better than one with a higher tradeoff value. The fittest is
considered as successive generation evolves. An excessively strong fitness selection bias can
lead to sub-optimal solution.
 Crossover

Crossover operates at an individual level and is used to generate new offspring from two
randomly selected individuals (parents) in the current population in order to result in an even
better individual in the subsequent generation. There are three methods of crossover:
single-point crossover, two-point crossover, and uniform crossover, for all of which the
chance of crossover is between 0.6 and 1 in general. As shown in Fig. 7a, 7b and 8, the
crossover operator used is determined by the following rules:

(,)
3

(() ())
*() / .i j

z i

v P j
comm i zi j

v prec v exec j
C c di do bw

∈ ∩

= + ∑

(,)
4 *(* *).i jv P

disc T LC c µ τ µ=

,

(,) (,)
(,) (*).

[(,)] [(,)]
i k

i j i j
i j

v E P N i k i k

cost v P EFT v P
U v P Min

Max cost v P Max EFT v P∈ ∈

= ∑

(,)
5 * .i jv P

str iC c st=

(,)
6 * ,i jv P

mem memC c s=

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 4, April 2015 1293

 One, two (or multiple) points are randomly chosen from selected parents.
 These random points divide each individual into left and right sections.
 Crossover then swaps the left (or the right) sections of the two individuals.
 Two new offspring are created by recombining sections taken from two parents.

 (a) (b)
Fig. 7. Single-point crossover and two-point crossover

Specially, a random mask containing bits (as illustrated in Fig. 8) is generated in uniform

crossover. The mask determines which bits are copied from each parent. The bit represents the
position of the elements in each individual, and the bit density in the mask determines how
much materials is taken from each parent.

Fig. 8. Uniform crossover

 Mutation
In genetic algorithms, a mutation generates new offspring from a single parent in the

current population. Mutation maintains the diversity of individuals by exploring new and
better genes than were previously considered in order to prevent a combination of all solutions
in the population converging into a local optimum of solved problems as crossover can only
explore the current combinations in the gene pool. However, mutation rates are low as the
chance of mutation in a specific individual is low (approximately 0.001). There are two types
of mutations: a replacing mutation and a swapping mutation.

 (a) (b)

Fig. 9. Replacing mutation and swapping mutation

1294 Hung et al.: CTaG: An Innovative Approach for Optimizing Recovery Time in Cloud Environment

The purpose of the replacing mutation is to reallocate a substitute processor to a random
task in an individual. The selected processor is also randomly chosen and has enough capacity
to execute the task. Fig. 9a illustrates the replacing mutation. In this figure, processor P2
allocated to task v4 is replaced by processor P4. In contrast, the swapping mutation changes the
execution order of independent tasks on the same processor in an individual for the same time
slot. The example of swapping mutation in Fig. 9b shows that task v5 occupies the initial time
slot of task v0.

To verify the performance of our proposed genetic algorithm based approach, we have also
designed several other task scheduling algorithms. These algorithms minimize the schedule
length of the workflow or lessen the cloud cost paid by CSCs. Algorithm 1 is Greedy for Cost
algorithm, where each task of the workflow is assigned to a processor which minimizes cost
greedily for Cloud resources to execute that task. In algorithm 2, Contention aware Scheduling
[11] aims to create a schedule based on EFT pondering on network contention. Interleaved
method in algorithm 3 spreads tasks to professors of all PMs as much as possible. Meanwhile,
algorithms 4,5 show that our approach takes into account both network contention and the
cloud cost as well as the tradeoff between them. Moreover, our method also tries to get a
global optimal scheduling of the workflow to reduce recovery time in case of failure.

Algorithm 1. Greedy for cost algorithm
Input : Task graph G = (V, E, w, c) , processor graph TG = (N,D)
Output : A new task scheduling
Function greedyForCostScheduling(G, TG) {
{
 Sort task vn ∈V into list L according to priority
 for each vn ∈L
 {
 Find the best processor Pj which minimize the execution cost of task vn

Assign vn on Pj
 }
 return a new task scheduling
}

Algorithm 2. Network contention aware scheduling algorithm
Input : Task graph G = (V, E, w, c) , processor graph TG = (N,D)
Output : A new task scheduling
Function contentionAwareScheduling (G, TG) {
{
 Sort task vn ∈V into list L according to priority
 for each vn ∈L
 {
 Find the best processor Pj which allows EFT of vn, taking account of network bandwidth usage;

Assign vn on Pj;
 }
 return a new task scheduling;
}

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 4, April 2015 1295

Algorithm 3. Interleaved scheduling algorithm
Input : Task graph G = (V, E, w, c) , processor graph TG = (N,D)
Output : A new task scheduling
Function interleavedScheduling (G, TG) {
{
 Sort task vn ∈V into list L according to priority
 Spread tasks to professors of all PSs as much as possible and processor Pj executing task vn task has
to allow EFT of vn
 return a new task scheduling
}

Algorithm 4. Cost-Time aware Genetic scheduling algorithm
Input : Task graph G = (V, E, w, c) , processor graph TG = (N,D)
Output : A new task scheduling
Function geneticScheduling (G, TG) {
{
 Generate initial population
 Compute fitness of each individual according to the equation (14)
 repeat // New generation
 for population_size
 {
 Select two parents from old generation

 Recombine parents for two offspring
 Compute fitness of offspring
 Insert offspring in new generation

 }
 until population has converged
 return a new task scheduling
}

Algorithm 5. Minimum recovery time approach
Input : Task graph G = (V, E, w, c) , processor graph TG = (N,D)
Output : A new task scheduling
Function minimizeRecoveryTime (G, TG)
{
 for (i =1; i<=number of tasks in critical path)
 {

 S1 = schedule generated by Cost-Time aware Genetic scheduling algorithm (Algorithm 4)
 for (failtask = 1 to number of all tasks)
 {
 //Assuming failure happens at failtask
 Find set T of all tasks executed after recovery if task failtask fail
 S2 = schedule is generated by Algorithm 4 with input is T and available processors

 }
 int index = 0
 Criticalpath[index++] =
 }
 return the shortest element of the Criticalpath
}

Set ? (1 2)S S S S= ∪ ∪

max ()
v V

scheduleLength S
∈

S =∅

1296 Hung et al.: CTaG: An Innovative Approach for Optimizing Recovery Time in Cloud Environment

5. Implementation and Analysis
In this section, we present experiments that analyze many aspects of our approach. To justify
the efficiency of the proposed approach, the Cost-Time aware Genetic scheduling algorithm
(CTaG), numerical simulations are used to evaluate it and compare its performance with those
of other methods, in terms of monetary cost or network bandwidth. The compared methods
include the well-known Contention-aware Scheduling (CaS) algorithm [11], the Greedy for
Cost algorithm (GfC), the Interleaved Scheduling method (IS) and a Time aware Genetic
scheduling (TaG) algorithm [23] keeping in view only processing time of the system.

5.1 Experimental Settings
All the parameters are different task graphs G=(V, E, w, c) with the increase of the matrix sizes
(10-60) and heterogeneous processor graphs TG=(N,D) which is a combination between 30
VMs with the different configurations located at the local system of CSCs for the above
algorithms as list in Table 2. We developed the simulations in Java with JDK-7u7-i586 and
Netbeans-7.2 using CloudSim [16]. It is a framework for modeling and simulation of cloud
computing infrastructures and services. In our simulation, we describe MI as Millions of
Instructions and denote MIPS as Million Instructions per Second to represent the processing
capacity of processors. Moreover, we define a sample of processing cost in Table 3, data
transmission cost in Table 4, waiting cost and disconnection one in Table 5. It is obvious that
the processing cost and transmission cost are inversely proportional to processing time and
transmission time correspondingly. The I/O data of the task has a size from 100 to 500 MB.

Table 2. Characteristics of the target system

Parameter Value
Network LAN

Topology model Fully Connected
Operating system Windows 7 professional

Number of processors [5, 30]
Number of tasks [10, 90]
Processing rate [10, 750] MIPS

Bandwidth 10, 100, 512, 1024 Mbps

Table 3. Processing rate and corresponding cost for executing a task at processor Pj

Processing rate (MIPS) Cost per time unit
[10, 50) 0.6

[50, 125) 1.7
[125, 250) 3.6
[250, 500) 7.5
[500, 750) 11

Table 4. Cost of data transmission

Bandwidth (Mbps) Cost per time unit
10 0.01

100 0.1
512 0.52

1024 1.024

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 4, April 2015 1297

Table 5. Other costs

Cost Cost per time unit
Cost of waiting time [0.1, 0.4]

Cost of a disconnection time [0,02, 0.2]

5.2 Experimental Results
The following figures show the simulation results of our proposed genetic method for task
scheduling compared against other scheduling techniques. In the following figures, it is
obvious to see that there are some differences between the simulated results. Fig. 10a shows
that, in terms of schedule length, in an environment with no failure, as the number of tasks
increases, our method is 27% better than GfC and 15% better than IS due to the extra
communication between processors. This is because the proposed method can determine
optimal schedules while considering network contention. Additionally, in Fig. 10b, when the
system has a failure that increases the recovery time, some physical machines have to restart,
which increases processing time in the workflow because some task nodes' results are lost and
must be reacquired. Our proposal produces a workflow schedule with better performance than
others regardless of the number of tasks. Particularly, it achieves a greater than 13% increase
in speed compared with the TaG and more than 38%, 18% increase compared with GfC, CaS,
respectively.

 (a) (b)
Fig. 10. Schedule length comparison without failure (a) and with failure (b)

 (a) (b)
Fig. 11. Cost comparison without failure (a) and with failure (b)

1298 Hung et al.: CTaG: An Innovative Approach for Optimizing Recovery Time in Cloud Environment

 Regarding the monetary cost paid by CSCs (as illustrated in Fig. 11a), it has been
observed that in case of no failure, TaG and CaS have the highest cost, while GfC has the
lowest cost but its performance is not good comparatively. The CTaG has a economic
advantage compared with IS, which means that its effectiveness increases together with
monetary cost. In the meantime, our solution is balanced between schedule length and cloud
cost. As a matter of fact, when compared with TaG, our method can save about 19% cost for
CSCs while performance reduction is not greater than 17%. Nonetheless, when a failure
occurs, the graph in Fig. 11b shows that, when the number of tasks increases, TaG and CaS
require the highest monetary cost, the GfC is intermediate and the proposed method has the
lowest cost. Notably, the cost of our approach is 24%, 20% less than the cost of the TaG, CaS,
respectively, and saves 17% when compared with the GfC cost.

 (a) (b)
 Fig. 12. Schedule length (a) and cost (b) with numbers of processors

We next measured the effect of increasing number of processors on the cloud cost and the
schedule length only in CTaG with a fixed number of tasks. The results reflected in Fig. 12a
and 12b indicate that more processors result in better system performance but higher cost. It is
highly noticeable to find that the cost goes up from 300500 G$ to 325000 G$ as the number of
processors increases from 15 to 20.

 (a) (b)

Fig. 13. Schedule length (a) and cost (b) with numbers of individuals

Further, when the number of individuals is altered from 20 to 90 (Fig. 13a, 13b), we

witness that the increase in the population size does not significantly affect the execution cost
of the workflow while probability of finding a faster solution is higher. The cost just fluctuates

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 4, April 2015 1299

between 55000 and 60000 G$. On the other hand, scheduling time exhibits a downward trend
from approximately 80 minutes to around 50 minutes. Finally, we observe the performance of
the CTaG with different number of generations.

 (a) (b)

 Fig. 14. Schedule length (a) and cost (b) with numbers of generations

Similar to the above simulation that regards the number of individuals, results from the Fig.

14a and 14b show that the schedule length of the workflow is reduced with slight decrease in
the execution cost when the number of the generations increases. In particular, the schedule
length drops dramatically from more than 290 minutes to 200 minutes when the number of
generations increases from 20 to 40. This is because each individual selected considers the
tradeoff between cloud cost and execution time.

5. Conclusion
In our study, we have presented an optimization and node recovery model for cloud computing,
to improve the reliability of cloud services. We modeled our work through genetic task
scheduling algorithm. The presented work can be very useful for large amount of data. The
proposed model works in such a way that it distributes the tasks among the computing nodes in
a datacenter on the basis of minimal scheduling length, hence, globally optimizing the overall
process. In case of failure, the system is returned to its previous state in minimum possible
time. Our model is cost-effective, since it considers the network bandwidth and the amount of
money user has to pay for the services and the tradeoff between them. The presented
simulation results and comparison with existing works justifies our model’s performance and
efficiency. We intend to extend our work with more diverse and challenging scenarios to
further extensively check the reliability of the system.

References
[1] Bartholomy, E., “The need to move toward virtualized and more resilient disaster-recovery

architectures,” IBM Journal of Research and Development, 2013. Article (CrossRef Link).
[2] Web Startups Crumble under Amazon S3 Outage

http://www.theregister.co.uk/2008/02/15/amazon_s3_outage_feb_2008/.
[3] L. Zeng, “Budget Conscious Scheduling Precedence-Constrained Many-task Workflow

Applications in Cloud,” in Proc. of Conf. on Advanced Information Networking and Applications,
2012. Article (CrossRef Link).

http://dx.doi.org/10.1147/JRD.2013.2258759
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6184368
http://dx.doi.org/10.1109/AINA.2012.12

1300 Hung et al.: CTaG: An Innovative Approach for Optimizing Recovery Time in Cloud Environment

[4] O. Sinnen, “Task Scheduling for Parallel Systems,” Wiley Series on Parallel and Distributed
Computting, Wiley-Interscience, 2007. Article (CrossRef Link).

[5] Kashi Venkatesh V., “Characterizing cloud computing hardware reliability,” in Proc. of the 1st
ACM symposium on Cloud computing, Microsoft Research, 2010. Article (CrossRef Link).

[6] Y.-C. Lee and A. Zomaya, “A novel state transition method for metaheuristic-based scheduling in
heterogeneous computing systems,” IEEE Transactions on Parallel and Distributed Systems, vol.
19, no. 9, pp. 1215–1223, 2008. Article (CrossRef Link).

[7] Joel Wolf, “SODA, An Optimizing Scheduler for Large-Scale Stream-Based Distributed
Computer Systems,” in Proc. of International Conf. on Middleware, pp. 306-325, 2008.
Article (CrossRef Link).

[8] Oliver Sinnen and Leonel A., ”Communication Contention in Task Scheduling,” IEEE
Transactions on Parallel and Distributed Systems, vol. 16, no. 6, 2005. Article (CrossRef Link).

[9] Chia-Lee Yang, Bang-Ning Hwang, “Key consideration factors of adopting cloud computing for
science,” CloudCom, 2012. Article (CrossRef Link).

[10] Shohei Gotoda, Naoki Shibata, “Task scheduling algorithm for multicore processor system for
minimizing recovery time in case of single node fault,” in Proc. of IEEE Conf. on Cluster, Cloud
and Grid Computing (CCGrid), 2012. Article (CrossRef Link).

[11] J. Li, Sen Su, Xiang Cheng, Qingjia Huang, Zhongbao Zhang, “Cost-Conscious Scheduling for
Large Graph Processing in the Cloud,” in Proc. of IEEE Conf. on High Performance Computing
and Communications, 2011. Article (CrossRef Link).

[12] Cloudsim, “A Framework for Modeling And Simulation of Cloud Computing Infrastrutures And
Services,” URL https://code.google.com /p/cloudsim/downloads/list.

[13] Ponemon institute, “2013 Study on Data Center Outages,” 2013. Article (CrossRef Link).
[14] Y. Gu, Z. Zhang, “An empirical study of high availability in stream processing systems,” in Proc.

of 10th ACM Conf. on Middleware, 2009. Article (CrossRef Link).
[15] Gonzalo H., “A Virtual Cloud Computing Provider for Mobile Devices,” in Proc. of ACM Int.

Workshop on Mobile Cloud Computing and Services: Social Networks and Beyond, 2010.
Article (CrossRef Link).

[16] H. Topcuoglu, Min-You Wu, “Performance-Effective and Low-Complexity Task Schduling for
Heterogeneous Computing,” IEEE Trans.on Parallel and Distributed Systems, 2002.
Article (CrossRef Link).

[17] Louis C. Canon and E. Jeannot, “Evaluation and Optimization of the Robustness of DAG
Schedules in Heterogeneous Environments,” IEEE Trans. on Parallel and Distributed Systems,
vol.21, no.4, pp. 532-546, 2010. Article (CrossRef Link).

[18] Pham Phuoc Hung, Mohammad Aazam, Eui-Nam Huh, “A solution for optimizing recovery time
in cloud computing,” in Proc. of Int. Conf. on Ubiquitous Information Management and
Communication, 2014. Article (CrossRef Link).

[19] Zhe Zhang, Hui Lei, Zhen Liu, “A Hybrid Approach to High Availability in Stream Processing
Systems,” in Proc. of IEEE Int. Conf. on Distributed Computing Systems, 2010.
Article (CrossRef Link).

[20] B. Narasimhan, R. Nichols, “State of cloud applications and platforms: The cloud adopters view,
Computer”, vol. 3, pp. 24 -28, 2011. Article (CrossRef Link).

[21] A. Iosup, S. Ostermann, “Performance analysis of cloud computing services for many-tasks
scientific computing,” IEEE Transactions on Parallel and Distributed Systems, 2011.
Article (CrossRef Link).

[22] T. Kaiser, O. Jegede, ”A Genetic Algorithm for Multiprocessor Task scheduling,” in Proc. of
World Congress. in Computer Science, Computer Engineering, and Applied Computing, 2013.
Article (CrossRef Link).

[23] Sachi G., Gaurav A., “Task Scheduling in Multi Processor System Using Genetic Algorithm,” in
Proc. of IEEE Conf. on Machine Learning and Computing, Karnataka, 2010.
Article (CrossRef Link).

http://dl.acm.org/citation.cfm?id=1205274
http://dl.acm.org/citation.cfm?id=1807161
http://dx.doi.org/10.1109/TPDS.2007.70815
http://dx.doi.org/10.1007/978-3-540-89856-6_16
http://dx.doi.org/10.1007/978-3-540-89856-6_16
http://dx.doi.org/10.1109/CloudCom.2012.6427610
http://dx.doi.org/10.1109/CCGrid.2012.23
http://dx.doi.org/10.1109/HPCC.2011.147
http://www.emersonnetworkpower.com/documentation/en-us/brands/liebert/documents/white%20papers/2013_emerson_data_center_outages_sl-24679.pdf
http://dl.acm.org/citation.cfm?id=1657012
http://dl.acm.org/citation.cfm?id=1810937
http://dx.doi.org/10.1109/71.993206
http://dx.doi.org/10.1109/TPDS.2009.84
http://dl.acm.org/citation.cfm?id=2558029
http://dx.doi.org/10.1109/ICDCS.2010.81
http://dx.doi.org/10.1109/MC.2011.66
http://dx.doi.org/10.1109/TPDS.2011.66
http://worldcomp-proceedings.com/proc/p2013/GEM3714.pdf
http://www.computer.org/csdl/proceedings/icmlc/2010/3977/00/3977a267-abs.html

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 4, April 2015 1301

[24] Huynh T.T.B, "Multi-objective Genetic Algorithm for Solving the Multilayer Survivable Optical
Network Design Problem,” Journal of Convergence, vol. 5, no. 1, 2014.
Article (CrossRef Link).

[25] Hadis H., Abdolah C., "Scheduling in Multiprocessor System Using Genetic Algorithm,”
International Journal of Advanced Science and Technology, vol. 43, 2012.
Article (CrossRef Link).

[26] Mohammad A., Salama H., Sulieman B., “On Static Scheduling of Tasks in Real Time
Multiprocessor Systems: An Improved GA-Based Approach,” The International Arab Journal of
e-Technology (IAJeT), vol. 11, no. 6, 2013. Article (CrossRef Link).

[27] Yujia Ge, Guiyi Wei, "GA-Based Task Scheduler for the Cloud Computing Systems," in Proc. of
IEEE Conf. on Web Information Systems and Mining, 2010. Article (CrossRef Link).

[28] Ruben V. den Bossche, “Cost-Efficient Scheduling Heuristics for Deadline Constrained
Workloads on Hybrid Clouds”, in Proc. of IEEE Conf. on Cloud Computing Technology and
Science (CloudCom), pp. 320-327, 2011. Article (CrossRef Link).

Pham Phuoc Hung received the B.S. degree in Computer Engineering from Ho Chi Minh
National University, University of Sciences, Vietnam, Master's degree in Computer Science
from Dongguk University, Korea. He used to be a project manager in some software
companies. He has been a PhD scholar in Computer Engineering Department at Kyung Hee
University, Korea, since 2012. At present, he is also working as Research Engineer at
Real-time Mobile Cloud Research Center (RmCRC), Kyung Hee University, where he has
been working on several large-scale R&D funded projects, including their proposals. His
research interests include Resource Allocation, Parallel and Distributing Computing, High
Performance Computing, Cluster and Grid Computing, Cloud Computing, Sensor Network.

Mohammad Aazam has been a PhD scholar in the School of Computer Engineering,
Kyung Hee University, since 2012. He did his MS from Mohammad Ali Jinnah University, in
2011 and BS from Gomal University, in 2006. He has served as Assistant Professor at Federal
Urdu University and Bahria University. He has also been Adjunct Faculty at SZABIST and
Research Engineer at Mohammad Ali Jinnah University. Currently, he is serving as Research
Engineer at Real-time Mobile Cloud Research Center (RmCRC), Kyung Hee University,
where he has been working on several large-scale R&D funded projects, including their
proposals. He is currently serving Sensors & Transducers Journal as Editor and IEEE
Communications Magazine as Associate Editor. Besides that, he is serving several IEEE
Transactions as Reviewer Board Member. He has, so far, published more than 70 journal and
conference papers. He is a Member IEEE, Member IEEE Communications Society, Member
IEEE Cloud Computing, Member IEEE Internet of Things, Member IEEE Smart Cities,
Member ISOC, Member ISOC-APAN (Asia Pacific Advanced Network), and Member KIPS
(Korea Information Processing Society).

Eui-Nam Huh has earned B.S. degree from Busan National University in Korea, Master's
degree in Computer Science from University of Texas, USA in 1995 and Ph.D degree from
the Ohio University, USA in 2002. He was a director of Computer Information Center and
Assistant Professor in Sahmyook University, South Korea during the academic year 2001 and
2002. He has also served for the WPDRTS/IPDPS community as program chair in 2003. He
has been an editor of Journal of Korean Society for Internet Information and Korea Grid
Standard group chair since 2002. He was also an Assistant Professor in SeoulWomen's
University, South Korea. Now he is with Kyung Hee University, South Korea as Professor in
Dept. of Computer Engineering. His interesting research areas are: High Performance
Network, Sensor Network, Distributed Real Time System, Grid, Cloud Computing, and
Network Security.

http://www.ftrai.org/joc/vol5no1/JoC-A4.pdf
http://www.sersc.org/journals/IJAST/vol43/8.pdf
http://ccis2k.org/iajit/?option=com_content&task=view&id=834
http://dx.doi.org/10.1109/WISM.2010.87
http://dx.doi.org/10.1109/CloudCom.2011.50

