• Title/Summary/Keyword: Computer-aided Research

Search Result 519, Processing Time 0.022 seconds

In-Flight Alignment of Inertial Navigation System Using Line-Of-Sight Information

  • Oh, Seung-Jin;Kim, Dong-Bum;Kim, Woo-Hyun;Jeong, Sang-Keun;Lee, Hyung-Keun;Lee, Jang-Gyu
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.109-113
    • /
    • 2006
  • This paper presents an in-flight alignment method for strapdown inertial navigation systems based on the line-of-sight information. Unlike the existing methods, the proposed method utilizes only the 2-axis angle measurements of the onboard image sensor and does not require any explicit range measurements between the vehicle and landmarks. To improve the accuracy of all the position, velocity, and attitude estimates through the in-flight alignment, an error model of the image-sensor-aided SDINS is derived. A simulation study demonstrates that the accuracy of SDINS can be improved by the line-of-sight information only.

  • PDF

CAD/CAM Integration based on Geometric Reasoning and Search Algorithms (기하 추론 및 탐색 알고리즘에 기반한 CAD/CAM 통합)

  • Han, Jung-Hyun;Han, In-Ho
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.1
    • /
    • pp.33-40
    • /
    • 2000
  • Computer Aided Process Planning (CAPP) plays a key role by linking CAD and CAM. Given CAD data of a part, CAPP has to recognize manufacturing features of the part. Despite the long history of research on feature recognition, its research results have rarely been transferred into industry. One of the reasons lies in the separation of feature recognition and process planning. This paper proposes to integrate the two activities through AI techniques, and presents efforts for manufacturable feature recognition, setup minimization, feature dependency construction, and generation of an optimal machining sequence.

  • PDF

Design, Combinatorial Library Synthesis and Biological Evaluation of Nonpeptide Scaffold for Beta Turns

  • Im, I-Sak;Thomas R.Webb;Dona Chianelli;Kim, Yong-Chul
    • Proceedings of the PSK Conference
    • /
    • 2003.10a
    • /
    • pp.91-91
    • /
    • 2003
  • The beta-turn has been implicated as an important conformation for biological recognition of peptides or proteins. We adapted the concept of general Ca atom positioning from the cluster analysis and recombination of each ideal beta-turn conformation pattern by Garland and Dean (1. Computer-Aided Molecular Design, 1999, 13, 469) as one strategy of designing non-peptide beta-turn scaffolds. (omitted)

  • PDF

Application of Artificial Intelligence in Capsule Endoscopy: Where Are We Now?

  • Hwang, Youngbae;Park, Junseok;Lim, Yun Jeong;Chun, Hoon Jai
    • Clinical Endoscopy
    • /
    • v.51 no.6
    • /
    • pp.547-551
    • /
    • 2018
  • Unlike wired endoscopy, capsule endoscopy requires additional time for a clinical specialist to review the operation and examine the lesions. To reduce the tedious review time and increase the accuracy of medical examinations, various approaches have been reported based on artificial intelligence for computer-aided diagnosis. Recently, deep learning-based approaches have been applied to many possible areas, showing greatly improved performance, especially for image-based recognition and classification. By reviewing recent deep learning-based approaches for clinical applications, we present the current status and future direction of artificial intelligence for capsule endoscopy.

User Interface Application for Cancer Classification using Histopathology Images

  • Naeem, Tayyaba;Qamar, Shamweel;Park, Peom
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.17 no.2
    • /
    • pp.91-97
    • /
    • 2021
  • User interface for cancer classification system is a software application with clinician's friendly tools and functions to diagnose cancer from pathology images. Pathology evolved from manual diagnosis to computer-aided diagnosis with the help of Artificial Intelligence tools and algorithms. In this paper, we explained each block of the project life cycle for the implementation of automated breast cancer classification software using AI and machine learning algorithms to classify normal and invasive breast histology images. The system was designed to help the pathologists in an automatic and efficient diagnosis of breast cancer. To design the classification model, Hematoxylin and Eosin (H&E) stained breast histology images were obtained from the ICIAR Breast Cancer challenge. These images are stain normalized to minimize the error that can occur during model training due to pathological stains. The normalized dataset was fed into the ResNet-34 for the classification of normal and invasive breast cancer images. ResNet-34 gave 94% accuracy, 93% F Score, 95% of model Recall, and 91% precision.

Application of various digital technique on full mouth rehabilitation: A case report (디지털 기술을 활용한 전악 고정성 보철 수복 증례)

  • Bae, Min-Soo;Song, Kwang-Yeob;Ahn, Seung-Geun;Park, Ju-Mi;Lee, Jung-Jin;Seo, Jae-Min
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.59 no.1
    • /
    • pp.43-54
    • /
    • 2021
  • Based on rapid improvement in digital fields, many advanced digital technologies are utilized in prosthodontic treatment. Especially, intraoral scanners and 3D printing technology are commonly used, and facial scanning technology is recently being attempted to be part of these digital routines. This case report aims to introduce a digital procedure using the intraoral scanner, facial scanner, and 3D printing technology to create definitive restorations, which are esthetic and harmonious with patient's face. From thoroughly evaluated full-mouth provisional restoration which was manufactured and fitted conventionally, definitive prostheses were fabricated using various digital technique. Stable occlusion with functionally and aesthetically satisfying results were achieved.

Development of Distributed Interactive Stochastic Combat Simulation (DISCSIM) Model

  • Hong, Yoon-Gee;Kwon, Soon-Jong
    • Journal of the military operations research society of Korea
    • /
    • v.25 no.2
    • /
    • pp.15-30
    • /
    • 1999
  • A number of combat simulation models are scattered and the analytic solution approaches have experienced very difficult computational efforts. Today´s computer communication technology let people to do many unrealistic things possible and the use of those technologies is becoming increasingly prevalent throughout the military operation. Both DIS and ADS are welled defined computer aided military simulations. This study discusses a simulation of stochastic combat network modeling through Internet space. We have developed two separate simulation models, one for clients and another for server, and validated for conducting studies with these models. The object-oriented design was necessary to define the system entities and their relationship, to partition functionality into system entities, and to transform functional metrics into realizations derived from system component behaviors. Heterogeneous forces for each side are assumed at any battle node. The time trajectories for mean number of survivors and combat history at each node, some important combat measures, and relative difference computations between models were made. We observe and may conclude that the differences exit and some of these are significant based on a limited number of experiments.

  • PDF

Automation of Architectural Design Process and Robotic System in Building Construction using Object-Oriented Design

  • Choo, Seung-Yeon;Park, Sang-Min
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.12
    • /
    • pp.1787-1795
    • /
    • 2009
  • This paper describes an automation of architectural design processes and the direction between this automation and robotic system in building construction using the concept of the object-oriented design in architecture. The research starts from the premise that many computer-aided design systems are mostly aimed at serving as drawing tools which are used only after a design formal solution has already been established by the architect. If the computer is well applied to the architectural design process, many positive things such as standardization of design detail, increasing productivity and collaboration, minimizing construction costs etc. can be done. To support an early design solution in the computer-based environment, the proposed automation was developed and tested in a real building project, using the object-oriented design concept such as product model. This design automation gives various design alternatives from the early design phase to the final stage of design details, according to musical harmony. This paper shows how architectural design process can be automated and how the data of the applied architectural design can be integrated into product model environment, in relation to robotic system in building construction.

  • PDF

SD-WLB: An SDN-aided mechanism for web load balancing based on server statistics

  • Soleimanzadeh, Kiarash;Ahmadi, Mahmood;Nassiri, Mohammad
    • ETRI Journal
    • /
    • v.41 no.2
    • /
    • pp.197-206
    • /
    • 2019
  • Software-defined networking (SDN) is a modern approach for current computer and data networks. The increase in the number of business websites has resulted in an exponential growth in web traffic. To cope with the increased demands, multiple web servers with a front-end load balancer are widely used by organizations and businesses as a viable solution to improve the performance. In this paper, we propose a load-balancing mechanism for SDN. Our approach allocates web requests to each server according to its response time and the traffic volume of the corresponding switch port. The centralized SDN controller periodically collects this information to maintain an up-to-date view of the load distribution among the servers, and incoming user requests are redirected to the most appropriate server. The simulation results confirm the superiority of our approach compared to several other techniques. Compared to LBBSRT, round robin, and random selection methods, our mechanism improves the average response time by 19.58%, 33.94%, and 57.41%, respectively. Furthermore, the average improvement of throughput in comparison with these algorithms is 16.52%, 29.72%, and 58.27%, respectively.

A Cost-Effective Land Surveying System for Engineering Applications

  • El-Ashmawy, Khalid L.A.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.11
    • /
    • pp.373-380
    • /
    • 2022
  • The field of land surveying is changing dramatically due to the way data is processed, analyzed and presented. Also, there is a growing demand for digital spatial information, coming primarily from the GIS (Geographical Information System) user community. Such a demand has created a strong development potential for a new land surveying software. An overview of the development and capabilities of a land surveying software platform based on the Windows system, SurveyingMap, is presented. Among its many features, SurveyingMap provides a lot of adaptability for networks adjustment, geodetic and plane coordinates transformation, contouring, sectioning, DTM (Digital Terrain Model) generation, and large scale mapping applications. The system output is compatible with well known computer aided drafting (CAD) /GIS packages to expand its scope of applications. SurveyingMap is also suitable for non-technical users due to the user-friendly graphic user interface. The system could be used in engineering, architecture, GIS, and academic teaching and research, among other fields. Two applications of SurveyingMap, extension of field control and large scale mapping, for the case study area are established. The results demonstrate that the system is adaptable and reasonably priced for use by college and university students.