• Title/Summary/Keyword: Computer-Aided Design-Computer-Aided Manufacturing (CAD-CAM)

Search Result 218, Processing Time 0.021 seconds

Application and consideration of digital technology for removable complete denture (총의치 제작에 적용 가능한 디지털 기술과 임상적 고찰)

  • Lee, Jung-Jin;Song, Kwang-Yeob;Park, Ju-Mi
    • The Journal of the Korean dental association
    • /
    • v.57 no.9
    • /
    • pp.534-543
    • /
    • 2019
  • Digital technology has changed various aspects of the clinical dentistry. The intraoral scanner and Computer-aided design / Computer-aided manufacturing (CAD-CAM) technology are widely used in fabricating fixed prostheses and in implant surgery. These technologies greatly improved the efficiency of clinical and laboratory procedures. With all newly introduced software, devices, and clinical studies, digital technology has been actively applied in removable prostheses. It is now possible to fabricate the removable prostheses more quickly and easily through subtractive and additive manufacturing. Various clinical and laboratory protocols were introduced by many manufacturers. The purpose of this review is to summarize the literature on digital technology for fabricating complete denture with current status and future perspectives.

  • PDF

The effect of light sources and CAD/CAM monolithic blocks on degree of conversion of cement

  • Cetindemir, Aydan Boztuna;Sermet, Bulent;Ongul, Deger
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.4
    • /
    • pp.291-299
    • /
    • 2018
  • PURPOSE. To assess the degree of conversion (DC) and light irradiance delivered to light-cured and dual-cured cements by application of different light sources through various types of monolithic computer-aided design and computer-aided manufacturing (CAD/CAM) materials. MATERIALS AND METHODS. RelyX Ultimate Clicker light-cured and dual-cured resin cement specimens with 1.5-mm thicknesses (n=300, 10/group), were placed under four types of crystalline core structure (Vita Enamic, Vita Suprinity, GC Ceresmart, Degudent Prettau Anterior). The specimens were irradiated for 40 seconds with an LED Soft-Start or pulse-delay unit or 20 seconds with a QTH unit. DC ratios were determined by using Fourier transform infrared spectroscopy (FTIR) after curing the specimen at 1 day and 1 month. The data were analyzed using the Mann-Whitney U test (for paired comparison) and the Kruskal-Wallis H test (for multiple comparison), with a significance level of P<.05. RESULTS. DC values were the highest for RelyX Ultimate Clicker light-cure specimens polymerized with the LED Soft-Start unit. The combination of the Vita Suprinity disc and RelyX Ultimate Clicker dual-cure resin cement yielded significantly higher values at both timepoints with all light units (all, P<.05). CONCLUSION. Within the limitations of this study, we conclude that the DC of RelyX Ultimate Clicker dual-cure resin cement was improved significantly by the use of Vita Suprinity and the LED Soft-Start light unit. We strongly recommend the combined use of an LED light unit and dual-cure luting cement for monolithic ceramic restorations.

Digital duplication of provisional prosthesis to fabricate definitive prosthesis for full mouth rehabilitation using double scan technique (잠정수복물의 최종수복물로의 디지털 복제를 통한 완전구강 회복 증례: Double scan technique)

  • Hong, Young-Tack;Koak, Jai-Young;Kim, Seong-Kyun;Heo, Seong-Joo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.59 no.1
    • /
    • pp.63-70
    • /
    • 2021
  • Using computer-aided design and manufacturing technique improve quality of treatment in many aspect. This case reports the complete mouth rehabilitation of a patient with amelogenesis imperfecta utilizing digital technology. Clinical examination revealed loss of mastication due to insufficient occlusal stop, missing teeth, interdental spacing due to microdontia, insufficient overbite, and etc. Full veneer crowns for teeth were selected, followed by a fixed partial denture and implant placement was done using CAD-CAM guide template with bone graft for partially edentulous space. Definitive restorations were duplicated by double scanning provisional restorations and successfully delivered to the patient. These full mouth rehabilitation procedures resulted in satisfactory outcomes for the patient functionally and aesthetically.

A case of digital maxillary complete denture and mandibular implant overdenture fabricated by CAD-CAM technique (완전 무치악 환자에서 CAD-CAM 기법을 이용한 상악 총의치 및 하악 임플란트 피개의치 수복: 증례 보고)

  • Kim, Kun Min;Oh, Kyung Chul;Kim, Sang Hyun;Han, Chol Gwan;Kim, Jee Hwan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.59 no.4
    • /
    • pp.442-450
    • /
    • 2021
  • The CAD-CAM technique is a rapidly developing field in the dental field and is applied to various fields of prosthetic treatment. Among them, the manufacturing of dentures using the milling technique classified as subtractive manufacturing is one of the commercialized digital full denture manufacturing methods. At the same time, it is possible to more efficiently manufacture a metal framework for implant overdenture by selective laser sintering or melting technique classified as an additive manufacturing method. The purpose of this article is to describe the fabrication of CAD-CAM maxillary complete denture and mandibular implant overdenture as well as its features.

Development of a DMU System Operated on a PDM System (PDM 시스템에서 운용되는 DMU 시스템 개발)

  • 이강수;이상헌
    • Korean Journal of Computational Design and Engineering
    • /
    • v.8 no.3
    • /
    • pp.157-166
    • /
    • 2003
  • In this paper, we explain the DMU (digital mockup) system based on the PDM system. Most manufacturing companies are trying to develop a competitive product by increasing the quality, shortening time to market (TIM) and reducing the cost of a product. Some technologies such as SE (System Engineering), CE (Concurrent Engineering), QFD (Quality Function Development), CI (Cost Innovation) and some systems such as CAD (Computer-Aided Design), CAE (Computer-Aided Engineering), CAM (Computer-Aided Manufacturing), PDM (Product Data Management) and visualization system are adopted for these purposes. Specially, DMU system utilizes a visualization system that shows the 3D shape of a product on the computer and it gives a quick intuition to a person whether he/she is an engineer or not. It also can induce the effects of CE and QFD. SO, 0 company is developing a DMU system integrating CAD, visualization and PDM system. The main feature of the developed DMU system is that it is entirely integrated with PDM system, which means that the 3D shape of any part or assembly can be retrieved through PDM system. The DMU system will change the development process, which will increase the competitiveness of a developed product.

Application of CAD-CAM technology to surgery-first orthognathic approach (디지털 기술을 이용한 선수술 악교정치료)

  • Kim, Yoon-Ji;Gil, Byung-Gyu;Ryu, Jae-Jun
    • The Journal of the Korean dental association
    • /
    • v.56 no.11
    • /
    • pp.622-630
    • /
    • 2018
  • For successful surgery-first approach, accurate prediction of skeletal and dental changes following orthognathic surgery is essential. With recent development of digital technology using computer-aided design/computer-aided manufacturing (CAD/CAM) technology, attempts to provide more predictable orthodontic/orthognathic treatment have been made through 3D virtual surgery and digital tooth setup. A clinical protocol for the surgery-first orthognathic approach using virtual surgery is proposed. A case of skeletal Class III patient with facial asymmetry treated by the surgery-first approach using digital setup and virtual surgery is presented. Advantages and limitations of applying CAD/CAM technology to orthognathic surgery are discussed.

  • PDF

Maxillary space closure using a digital manufactured Mesialslider in a single appointment workflow

  • Wilhelmy, Lynn;Willmann, Jan H.;Tarraf, Nour Eldin;Wilmes, Benedict;Drescher, Dieter
    • The korean journal of orthodontics
    • /
    • v.52 no.3
    • /
    • pp.236-245
    • /
    • 2022
  • New digital technologies, many involving three-dimensional printing, bring benefits for clinical applications. This article reports on the clinical procedure and fabrication of a skeletally anchored mesialization appliance (Mesialslider) using computer-aided design/computer-aided manufacturing (CAD/CAM) for space closure of a congenitally missing lateral incisor in a 12-year-old female patient. The insertion of the mini-implants and appliance was performed in a single appointment. Bodily movement of the molars was achieved using the Mesialslider. Anchorage loss, such as deviation of the anterior midline or palatal tilting of the anterior teeth, was completely avoided. CAD/CAM facilitates safe and precise insertion of mini-implants. Further, mini-implants can improve patient comfort by reducing the number of office visits and eliminating the need for orthodontic bands and physical impressions.

F.A에 있어서의 CAD/CAM

  • Lee, Bong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.3 no.4
    • /
    • pp.23-29
    • /
    • 1986
  • CAD라 함은 computer Aided Design의 약자로서, 종종 컴퓨터 지원설계로 번역되고 있다. 그리고, CAM도 computer Aided Manufacturing의 약자로서 컴퓨터 지원제조로 번역된다. 컴퓨터가 실용화되고 설계에의 이용이 가능해졌을 당시는 설계의 자동화(DA : Design Automation)에 대한 기대가 컸다. 그러나 현실로는, 설계자가 설계하는데 있어서 컴퓨터와 주변장치들을 가까이 두고 도구로 이용하게 되었으나, 그것은 주로 제한된 비교적 단순한 제품의자동설계로서, DA의 발전은 예상외로 제자리 걸음을 하고 있었다. 인간을 대신하여 컴퓨터에 설계를 시킨다는 것이 얼마나 어렵다는 것, 특히, 그와같은 Software 개발이 어럽다는 것을 인식하게 되었다. 그래서 <생각하는 일>과 <창조하는 일>과 같이 본래 인간의 본질적인 기능 에 속하는 것을 인간(설계자) 이 하고, <설계하는 일> <제도하는 일> 과 같은 기계적 인 일을 컴퓨터에 시키는 분업이 생각하게 되었다. 이것이 컴퓨터 지원설계(CAD)인 것이다. CAC에 있어서, 설계의 주역은 어디까지나 인간(설계자)에 있으며, 컴퓨터는 설계자의 기계적(비인간적)인 일을 도와주는 도구인 것이다. 이와같이 설계에 있어서 컴퓨터의 위치가 정의된다.

  • PDF

Research on Engineering & Technology Education for Elementary School Student by using F1 in Schools Program (F1 in Schools 프로그램을 이용한 초등학생 대상 공학 기술 교육에 관한 연구)

  • Park, So-Ra;Nam, Hyun-Wook
    • Journal of Engineering Education Research
    • /
    • v.11 no.1
    • /
    • pp.85-100
    • /
    • 2008
  • The purpose of this study is development of 'F1 in Schools Program' for elementary school student and validation of the program. Fifteen students were originally chosen from the W elementary school in Cheongju, Chungcheogbuk-Do. The children were tested on their understanding of science and 'F1 in Schools Program'. After developing the 'F1 in Schools Program', it was used in the classroom to evaluate applicability and to examine the responses from students, parents and schools. The program consists of 60 classes and the time of each class is 40 minutes. This study was conducted for 10 days from January 22nd, 2007 to February 2nd, 2007. CAD(Computer Aided Design), CFD(Computation Fluid Dynamics), CAM(Computer Aided manufacturing) and CNC Machine were used in this study and proved to be good materials for students in that they increased the students' participation and imagination. However, the children's cognitive and creative abilities as well as manuals written in English hampered the process. Most students, parents, schools seemed to be satisfied with use of the program. However, the schools showed that there was not enough understanding of the program as a whole. The processes with which students build and inspect using the $CO_2$Model Car not only improves the processing of the model but also enhanced the students scientific understanding related to the car speed.

Fabrication of complete denture using digital technology in patient with mandibular deviation: a case report (하악 편위 환자에서 디지털 방식을 이용한 총의치 제작 증례)

  • Lee, Eunsu;Park, Juyoung;Park, Chan;Yun, Kwi-Dug;Lim, Hyun-Pil;Park, Sangwon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.38 no.1
    • /
    • pp.34-41
    • /
    • 2022
  • Recently, digital technology and computer-aided design/computer-aided manufacturing (CAD/CAM) environment have changed the clinician treatment method in the fabrication of dentures. The denture manufacturing method with CAD/CAM technology simplifies the treatment and laboratory process to reduce the occurrence of errors and provides clinical efficiency and convenience. In this case, complete dentures were fabricated using stereolithography (SLA)-based 3D printing in patient with mandibular deviation. Recording base were produced in a digital model obtained with an intraoral scanner, and after recording a jaw relation in the occlusal rim, a definitive impression was obtained with polyvinyl siloxane impression material. In addition, facial scan data with occlusal rim was obtained so that it can be used as a reference in determination of the occlusal plane and in arrangement of artificial teeth during laboratory work. Artificial teeth were arranged through a CAD program, and a gingival festooning was performed. The definitive dentures were printed by SLA-based 3D printer using a Food and Drug Administration (FDA)-approved liquid photocurable resin. The denture showed adequate retention, support and stability, and results were satisfied functionally and aesthetically.