• Title/Summary/Keyword: Computer tomography

Search Result 425, Processing Time 0.027 seconds

A wireless impedance analyzer for automated tomographic mapping of a nanoengineered sensing skin

  • Pyo, Sukhoon;Loh, Kenneth J.;Hou, Tsung-Chin;Jarva, Erik;Lynch, Jerome P.
    • Smart Structures and Systems
    • /
    • v.8 no.1
    • /
    • pp.139-155
    • /
    • 2011
  • Polymeric thin-film assemblies whose bulk electrical conductivity and mechanical performance have been enhanced by single-walled carbon nanotubes are proposed for measuring strain and corrosion activity in metallic structural systems. Similar to the dermatological system found in animals, the proposed self-sensing thin-film assembly supports spatial strain and pH sensing via localized changes in electrical conductivity. Specifically, electrical impedance tomography (EIT) is used to create detailed mappings of film conductivity over its complete surface area using electrical measurements taken at the film boundary. While EIT is a powerful means of mapping the sensing skin's spatial response, it requires a data acquisition system capable of taking electrical impedance measurements on a large number of electrodes. A low-cost wireless impedance analyzer is proposed to fully automate EIT data acquisition. The key attribute of the device is a flexible sinusoidal waveform generator capable of generating regulated current signals with frequencies from near-DC to 20 MHz. Furthermore, a multiplexed sensing interface offers 32 addressable channels from which voltage measurements can be made. A wireless interface is included to eliminate the cumbersome wiring often required for data acquisition in a structure. The functionality of the wireless impedance analyzer is illustrated on an experimental setup with the system used for automated acquisition of electrical impedance measurements taken on the boundary of a bio-inspired sensing skin recently proposed for structural health monitoring.

Virtual Non-Contrast Computer Tomography (CT) with Spectral CT as an Alternative to Conventional Unenhanced CT in the Assessment of Gastric Cancer

  • Tian, Shi-Feng;Liu, Ai-Lian;Wang, He-Qing;Liu, Jing-Hong;Sun, Mei-Yu;Liu, Yi-Jun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.6
    • /
    • pp.2521-2526
    • /
    • 2015
  • Objective: The purpose of this study was to evaluate computed tomography (CT) virtual non-contrast (VNC) spectral imaging for gastric carcinoma. Materials and Methods: Fifty-two patients with histologically proven gastric carcinomas underwent gemstone spectral imaging (GSI) including non-contrast and contrast-enhanced hepatic arterial, portal venous, and equilibrium phase acquisitions prior to surgery. VNC arterial phase (VNCa), VNC venous phase (VNCv), and VNC equilibrium phase (VNCe) images were obtained by subtracting iodine from iodine/water images. Images were analyzed with respect to image quality, gastric carcinoma-intragastric water contrast-to-noise ratio (CNR), gastric carcinoma-perigastric fat CNR, serosal invasion, and enlarged lymph nodes around the lesions. Results: Carcinoma-water CNR values were significantly higher in VNCa, VNCv, and VNCe images than in normal CT images (2.72, 2.60, 2.61, respectively, vs 2.35, $p{\leq}0.008$). Carcinoma-perigastric fat CNR values were significantly lower in VNCa, VNCv, and VNCe images than in normal CT images (7.63, 7.49, 7.32, respectively, vs 8.48, p< 0.001). There were no significant differences of carcinoma-water CNR and carcinoma-perigastric fat CNR among VNCa, VNCv, and VNCe images. There was no difference in the determination of invasion or enlarged lymph nodes between normal CT and VNCa images. Conclusions: VNC arterial phase images may be a surrogate for conventional non-contrast CT images in gastric carcinoma evaluation.

Comparison between Computer Tomography and Magnetic Resonance Imaging in the Diagnosis of Small Hepatocellular Carcinoma

  • Lertpipopmetha, Korn;Tubtawee, Teeravut;Piratvisuth, Teerha;Chamroonkul, Naichaya
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.11
    • /
    • pp.4805-4811
    • /
    • 2016
  • Background: Hepatocellular carcinomas (HCCs) less than 2 cm in diameter generally demonstrate a good outcome after curative therapy. However, the diagnosis of small HCC can be problematic and requires one or more dynamic imaging modalities. This study aimed to compare the sensitivity and agreement between CT and MRI for the diagnosis of small HCCs. Methods: CT and/or MRI scans of HCCs (1-2 cm) diagnosed by histopathology or typical vascular pattern according to the 2005 AASLD criteria were blindly reviewed by an abdominal radiologist. The reports were defined as conclusive/typical when arterial enhancement and washout during the portal/delayed phases were observed and as inconclusive when typical vascular patterns were not observed. The sensitivity and Cohen's kappa (k) for agreement were calculated. Results: In 27 patients, 27 HCC nodules (1-2 cm) were included. Diagnosis with a single-imaging modality (CT or MRI) was 81 % versus 48 % (p = 0.01). The CT sensitivity was significantly higher than MRI (78 % versus 52 %, p = 0.04). Among 27 nodules that underwent both CT and MRI, a discordance in typical enhancement patterns was found (k = 0.319, p = 0.05). In cases with inconclusive CT results, MRI gave only an additional 3.7 % sensitivity to reach a diagnosis. In contrast, further CT imaging following inconclusive MRI results gave an additional 29.6 % sensitivity.Conclusions: A single typical imaging modality is sufficient to diagnose small HCCs. Compared with MRI, multiphasic CT has a higher sensitivity. The limitations of MRI could be explained by the greater need for patient cooperation and the types of MRI contrast agent.

3D Reconstruction Using Segmentation of Myocardial SPECT (SPECT 심근영상의 영상분할을 이용한 3차원 재구성)

  • Jung, Jae-Eun;Lee, Jun-Haeng;Choi, Seok-Yoon;Lee, Sang-Bock
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.6
    • /
    • pp.2240-2245
    • /
    • 2010
  • Myocardial imaging in SPECT (Single Photon Emission Computed tomography) scan of the gamma-ray emitting radiopharmaceuticals to patients after intravenous radiopharmaceuticals evenly spread in the heart region of interest by recording changes in the disease caused by a computer using the PSA test is to diagnose. Containing information on the functional myocardial perfusion imaging is a useful way to examine non-invasive heart disease, but the argument by noise and low resolution of the physical landscape that is difficult to give. For this paper, the level of myocardial imaging by using the three algorithms to split the video into 3-D implementation of the partitioned area to help you read the proposed plan. To solve the difficulty of reading level, interest in using the sheet set, partitioned area of the left ventricle was ranked the partitioned area was modeled as a 3-D images.

Submandibular sialolithiasis with CT and scintigraphy: CT values and salivary gland excretion in the submandibular glands

  • Ogura, Ichiro;Hayama, Kazuhide;Sue, Mikiko;Oda, Takaaki;Sasaki, Yoshihiko
    • Imaging Science in Dentistry
    • /
    • v.47 no.4
    • /
    • pp.227-231
    • /
    • 2017
  • Purpose: Sialolithiasis is one of the most prevalent large obstructive disorders of the submandibular glands. The aim of this study was to investigate submandibular sialolithiasis with computed tomography (CT) and scintigraphy, with a particular focus on the relationship between CT values of the submandibular glands and their excretion rate. Materials and Methods: Fifteen patients with submandibular sialolithiasis who underwent CT and salivary gland scintigraphy were included in this study. The relationship between the CT values of submandibular glands with and without sialoliths and salivary gland excretion measured using salivary gland scintigraphy was statistically analyzed. Dynamic images were recorded on the computer at 1 frame per 20 seconds. The salivary gland excretion fraction was defined as A (before stimulation test [counts/frame]) / B (after stimulation test [counts/frame]) using time-activity curves. Results: The CT values in the submandibular glands with and without sialoliths was $9.9{\pm}44.9$ Hounsfield units(HU) and $34.2{\pm}21.8HU$, respectively (P=.233). Regarding the salivary gland excretion fraction using scintigraphy, the A/B value in the submandibular glands with sialoliths ($1.09{\pm}0.23$) was significantly lower than in the submandibular glands without sialoliths($1.99{\pm}0.57$, P=.000). Conclusion: Assessments of the CT values and the salivary gland excretion fraction using scintigraphy in the submandibular glands seem to be useful tools evaluating submandibular sialolithiasis.

Dynamic Electrical Impedance Tomography with Internal Electrodes (내부 전극을 이용한 동적 전기 임피던스 단층촬영법)

  • Kang, Suk-In;Kim, Kyung-Youn
    • Journal of IKEEE
    • /
    • v.5 no.2 s.9
    • /
    • pp.153-163
    • /
    • 2001
  • Electrical impedance tomography(EIT) is a relatively new imaging modality in which the internal impedivity distribution is reconstructed based on the known sets of injected currents and measured voltages on the surface of the object. We describe a dynamic EIT imaging technique for the case where the resistivity distribution inside the object changes rapidly within the time taken to acquire a full set of independent measurement data. In doing so, the inverse problem is treated as the state estimation problem and the unknown state (resistivity) is estimated with the aid of extended Kalman filter in a minimum mean square error sense. In particular, additional electrodes are attached to the known internal structure of the object to enhance the reconstruction performance and modified Tikhonov regularization technique is employed to mitigate the ill-posedness of the inverse problem. Computer simulations are provided to illustrate the reconstruction performance of the proposed algorithm.

  • PDF

Volumetric quantification of bone-implant contact using micro-computed tomography analysis based on region-based segmentation

  • Kang, Sung-Won;Lee, Woo-Jin;Choi, Soon-Chul;Lee, Sam-Sun;Heo, Min-Suk;Huh, Kyung-Hoe;Kim, Tae-Il;Yi, Won-Jin
    • Imaging Science in Dentistry
    • /
    • v.45 no.1
    • /
    • pp.7-13
    • /
    • 2015
  • Purpose: We have developed a new method of segmenting the areas of absorbable implants and bone using region-based segmentation of micro-computed tomography (micro-CT) images, which allowed us to quantify volumetric bone-implant contact (VBIC) and volumetric absorption (VA). Materials and Methods: The simple threshold technique generally used in micro-CT analysis cannot be used to segment the areas of absorbable implants and bone. Instead, a region-based segmentation method, a region-labeling method, and subsequent morphological operations were successively applied to micro-CT images. The three-dimensional VBIC and VA of the absorbable implant were then calculated over the entire volume of the implant. Two-dimensional (2D) bone-implant contact (BIC) and bone area (BA) were also measured based on the conventional histomorphometric method. Results: VA and VBIC increased significantly with as the healing period increased (p<0.05). VBIC values were significantly correlated with VA values (p<0.05) and with 2D BIC values (p<0.05). Conclusion: It is possible to quantify VBIC and VA for absorbable implants using micro-CT analysis using a region-based segmentation method.

Investigation of Ring Artifact Using Algebraic Reconstruction Technique (대수적 재구성 기법을 통한 링 아티팩트 조사)

  • Chon, Kwon Su
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.1
    • /
    • pp.65-70
    • /
    • 2018
  • Computed tomography system is widely used on various fields because section image of an object can be acquired. During several step to obtain section image, artifacts by many error factors can be added on the image. Ring artifact induced by the CT system is examined in this study. A test phantom of $512{\times}512$ size was constructed numerically, and the ring artifact was investigated by the algebraic reconstruction technique. The computer program was realized using Visual C++ under the fan beam geometry with projections of 720 and detector pixel of 1,280. The generation of ring artifact was verified by applying different detection efficiency on detector pixels. The ring intensity became large as increasing the ring value, and the ring artifacts were strongly emphasized near the center of the reconstructed image. The ring artifact may be eliminated by tracking the position of ring artifact on the reconstructed image and by calibrating the detector pixel.

An implementation of the continuous wave doppler system for blood flow measurement using the ultrasound (효율적인 혈류 속도 측정을 위한 연속 초음파 도플러 장치의 구현)

  • 박형재;김영길
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.05a
    • /
    • pp.516-519
    • /
    • 2001
  • To diagnose a patient's blood vessel disease, apoplexy, hypertension, arteriosclerosis, the blood velocity is very important. Determining the blood velocity methods using ultrasound are Continuous Doppler System and Pulse Doppler System. In using the Pulse Doppler System, we can obtain the position of blood velocity. But it is more complex hardware than Continuous Doppler System and it has low SNR(signal-noise ratio). So in this study, to obtain a believable information we use the Continuous Pulse Doppler System. Thus system have analog part and digital part. In analog part is composed of ultrasound generating part, the amplifying part to amplify the received signal from ultrasound sensor, the demodulation part to detect blood velocity and the filtering part to remove the noise. In digital part is composed of the A/D conversion part, digital signal processing part, and the communication part to communicate the PC. In this study to implement efficient ultrasound blood velocity measurement system, we can get the patient's blood velocity information in realtime. Thus, It is a useful in the accurate diagnosis with C.T(computered tomography), M.R.I(magnetic resonance imaging).

  • PDF

Measurement of Prostate Phantom Volume Using Three-Dimensional Medical Imaging Modalities (3차원 의료영상진단기기를 이용한 가상 전립선 용적 측정)

  • Seoung, Youl-Hun;Joo, Yong-Hyun;Choe, Bo-Young
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.4
    • /
    • pp.285-291
    • /
    • 2010
  • Recently, advance on various modalities of diagnosing, prostate volume estimation became possible not only by the existing two-dimension medical images data but also by the three-dimensional medical images data. In this study, magnetic resonance image (MRI), computer tomography (CT) and ultrasound (US) were employed to evaluate prostate phantom volume measurements for estimation, comparison and analysis. For the prostate phantoms aimed at estimating the volume, total of 17 models were developed by using devils-tongue jelly and changing each of the 5ml of capacity from 20ml to 100ml. For the volume estimation through 2D US, the calculation of the diameter with C9-5Mhz transducer was conducted by ellipsoid formula. For the volume estimation through 3D US, the Qlab software (Philips Medical) was used to calculate the volume data estimated by 3D9-3Mhz transducer. Moreover, the images by 16 channels CT and 1.5 Tesla MRI were added by the method of continuous cross-section addition and each of imaginary prostate model's volume was yielded. In the statistical analysis for comparing the availability of volume estimation, the correlation coefficient (r) was more than 0.9 for all indicating that there were highly correlated, and there were not statistically significant difference between each of the correlation coefficient (p=0.001). Therefore, the estimation of prostate phantom volume using three-dimensional modalities of diagnosing was quite closed to the actual estimation.