DOI QR코드

DOI QR Code

Investigation of Ring Artifact Using Algebraic Reconstruction Technique

대수적 재구성 기법을 통한 링 아티팩트 조사

  • Chon, Kwon Su (Department of Radiological Science, Daegu Catholic University)
  • 천권수 (대구가톨릭대학교 방사선학과)
  • Received : 2018.01.14
  • Accepted : 2018.02.28
  • Published : 2018.02.28

Abstract

Computed tomography system is widely used on various fields because section image of an object can be acquired. During several step to obtain section image, artifacts by many error factors can be added on the image. Ring artifact induced by the CT system is examined in this study. A test phantom of $512{\times}512$ size was constructed numerically, and the ring artifact was investigated by the algebraic reconstruction technique. The computer program was realized using Visual C++ under the fan beam geometry with projections of 720 and detector pixel of 1,280. The generation of ring artifact was verified by applying different detection efficiency on detector pixels. The ring intensity became large as increasing the ring value, and the ring artifacts were strongly emphasized near the center of the reconstructed image. The ring artifact may be eliminated by tracking the position of ring artifact on the reconstructed image and by calibrating the detector pixel.

CT 장치는 물체 내부의 단면 영상 획득이 가능하기 때문에 여러 분야에 광범위하게 사용되고 있다. 단면 영상을 획득하는 여러 단계의 에러 요인들로 인해 다양한 아티팩트가 유발되고 있다. 장치에 의해 발생하는 링 아티팩트를 조사하였다. $512{\times}512$ 크기의 수치 팬텀을 구현하고 대수적 재구성 기법으로 링 아티팩트의 특성을 연구하였다. 프로그램은 Visual C++로 작성하였으며 720개의 투영 및 1,280개의 검출기 픽셀을 갖는 상황에서 구현하였다. 링 아티팩트는 검출기 픽셀의 검출 효율이 서로 달라서 발생한다는 것을 확인하였다. Ring Value 값이 증가할수록 Ring Intensity의 값도 증가하였고, 영상의 원점에 가까울수록 링 아티팩트가 강하게 나타났다. 단면 영상에서 링 아티팩트가 발생하는 위치를 파악하고 역으로 검출기 픽셀의 위치를 추적해 검출효율을 보정함으로써 링 아티팩트를 제거할 수 있을 것이다.

Keywords

References

  1. G. N. Hounsfield, "Computerized transverse axial scanning (tomography): I. Description of system," The British. Journal Radiology, Vol. 46, pp. 1016-1022, 1973. https://doi.org/10.1259/0007-1285-46-552-1016
  2. W. A. Kalender, "X-ray computed tomography," Physics in Medicine and Biology, Vol. 51, pp. R29-R43, 2006. https://doi.org/10.1088/0031-9155/51/13/R03
  3. W. Sun, S. B. Beown, R. K. Leach, "An Overview of Industrial X-ray Computed Tomography," NPL Report ENG 32, 2012.
  4. J. Hsieh, Computed Tomography: Principles, Design, Artifacts, and Recent Advances, SPIE Press, Washington, 2009.
  5. J. F. Barrett, N. Keat, "Artifacts in CT: Recognition and Avoidance," RadioGraphics, Vol. 24, No. 6, pp. 1679-1691, 2004. https://doi.org/10.1148/rg.246045065
  6. D. Prell, Y. Kyriakou, W. A. Kalender, "Comparison of ring artifact correction methods for flat-detector CT," Physics in Medicine and Biology, Vol. 54, No. 12, pp. 3881-3895, 2009. https://doi.org/10.1088/0031-9155/54/12/018
  7. Y. Kim, J. Baek, D. Hwang, "Ring artifact correction using detector line-ratios in computed tomography," OPTICS EXPRESS, Vol. 22, No. 11, pp. 13380-13392, 2014. https://doi.org/10.1364/OE.22.013380
  8. E. M. Anas, S. Y. Lee, M. K. Hasan, "Removal of ring artifacts in CT imaging through detection and correction of stripes in the sinogram," Physics in Medicine and Biology, Vol. 55, No. 22, pp. 6911-6930, 2010. https://doi.org/10.1088/0031-9155/55/22/020
  9. E. M. Anas, S. Y. Lee, K. Hasan, "Classification of ring artifacts for their effective removal using type a daptive correction schemes," Computers in Biology Medicine, Vol. 41, No. 6, pp. 390-401, 2011. https://doi.org/10.1016/j.compbiomed.2011.03.018
  10. B. Munch, P. Trtik, F. Marone, M. Stampanoni, "Stripe and ring artifact removal with combined wavelet-Fourier filtering," OPTICS EXPRESS, Vol. 17, No. 10, pp. 8567-8591, 2009. https://doi.org/10.1364/OE.17.008567
  11. C. Raven,"Numerical removal of ring artifacts in microtomography," REVIEW OF SCIENTIFIC INSTRUMENTS, Vol. 69, No. 8, pp. 2978-2980, 1998. https://doi.org/10.1063/1.1149043
  12. A. L. C. Kwan, J. A. Seibert, J. M. Boone, "An improved method for flat-field correction of flat panel x-ray detector," Medical Physics, Vol. 33, No. 2, pp. 391-393, 2006. https://doi.org/10.1118/1.2163388
  13. P. M. Joseph, "An Improved Algorithm for Reprojecting Rays through Pixel Images," IEEE Transactions on Medical Imaging, Vol. 1, No. 3, pp. 192-196, 1982. https://doi.org/10.1109/TMI.1982.4307572
  14. A. C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging, IEEE Press, New York, 1988.
  15. S. Zhang, D. Zhang, H. Gong, O. Ghasemalizadeh, G. Wang, G. Cao, "Fast and accurate computation of system matrix for area integral model-based algebraic reconstruction technique," Optical Engineering, Vol. 53, No. 11, pp. 113101-1-113101-9, 2014.