Candra Zonyfar;Taek Lee;Jung-Been Lee;Jeong-Dong Kim
Journal of Platform Technology
/
제11권6호
/
pp.13-20
/
2023
Regularly inspecting vehicle tires' condition is imperative for driving safety and comfort. Poorly maintained tires can pose fatal risks, leading to accidents. Unfortunately, manual tire visual inspections are often considered no less laborious than employing an automatic tire inspection system. Nevertheless, an automated tire inspection method can significantly enhance driver compliance and awareness, encouraging routine checks. Therefore, there is an urgency for automated tire inspection solutions. Here, we focus on developing a deep learning (DL) model to predict cracked tires. The main idea of this study is to demonstrate the comparative analysis of DenseNet121, VGG-19 and EfficientNet Convolution Neural Network-based (CNN) Transfer Learning (TL) and suggest which model is more recommended for cracked tire classification tasks. To measure the model's effectiveness, we experimented using a publicly accessible dataset of 1028 images categorized into two classes. Our experimental results obtain good performance in terms of accuracy, with 0.9515. This shows that the model is reliable even though it works on a dataset of tire images which are characterized by homogeneous color intensity.
International Journal of Computer Science & Network Security
/
제21권6호
/
pp.17-22
/
2021
The attack trend on end-users via mobile devices is increasing in both the danger level and the number of attacks. Especially, mobile devices using the Android operating system are being recognized as increasingly being exploited and attacked strongly. In addition, one of the recent attack methods on the Android operating system is to take advantage of Android Package Kit (APK) files. Therefore, the problem of early detecting and warning attacks on mobile devices using the Android operating system through the APK file is very necessary today. This paper proposes to use the method of analyzing abnormal behavior of APK files and use it as a basis to conclude about signs of malware attacking the Android operating system. In order to achieve this purpose, we propose 2 main tasks: i) analyzing and extracting abnormal behavior of APK files; ii) detecting malware in APK files based on behavior analysis techniques using machine learning or deep learning algorithms. The difference between our research and other related studies is that instead of focusing on analyzing and extracting typical features of APK files, we will try to analyze and enumerate all the features of the APK file as the basis for classifying malicious APK files and clean APK files.
International Journal of Fuzzy Logic and Intelligent Systems
/
제3권1호
/
pp.44-51
/
2003
Knowledge acquisition is a bottleneck in knowledge-based system implementation. Decision tree induction is a useful machine learning approach for extracting classification knowledge from a set of training examples. Many real-world data contain fuzziness due to observation error, uncertainty, subjective judgement, and so on. To cope with this problem of real-world data, there have been some works on fuzzy classification rule learning. This paper makes a survey for the kinds of fuzzy classification rules. In addition, it presents a fuzzy classification rule learning method based on decision tree induction, and shows some experiment results for the method.
In this paper, we introduce the sharable and reusable learning objects which are suitable for XML Web services in e-learning systems. These objects are extracted from the principles of pedagogical paradigms for reusable learning units. We call them LIO (Learning Item Object) objects. Existing models, such as Web-hosted and ASP-oriented service model, are difficult to cooperate and integrate among the different kinds of e-learning systems. So we developed the LIO objects that are suitable for XML Web services. The reusable units that are extracted from pedagogical paradigms are tutorial item, resource, case example, simulation, problems, test, discovery and discussion. And these units correspond to the LIO objects in our learning object model. As a result, the proposed model is that learner and instruction designer should increase the power of understanding about learning contents that are based on pedagogical paradigms. By using XML Web services, this guarantees the integration and interoperation of the different kinds of e-learning systems in distributed environments and so educational organizations can expect the cost reduction in constructing e-learning systems.
본 논문에서는 프로그래밍 언어 교육을 위한 자기주도 학습지원 추천시스템을 제안한다. 이 시스템은 학습자의 수준별 단계별 프로그래밍 학습을 지원하기 위해 협업필터링을 이용한 추천시스템이다. 본 연구에서는 이러닝 환경에서 학습자가 자신의 학습단계에 필요한 학습과정을 계획하고 학습하는 과정에서 자기주도적 학습효과를 높일 수 있도록 학습주제별 학습수준 기반 학습자 프로파일과 학습주제사이의 연관성 프로파일을 이용한 협업 필터링을 사용하여 프로그래밍 언어 학습지원 추천시스템을 설계하였다. 이 시스템은 이러닝 환경에서 제공되는 프로그래밍 언어 학습 시스템이 자기주도적 학습을 지원하는데 발생하는 가장 큰 어려움인 문제 해결 능력 향상에 기반한 프로그래밍 문제 제공의 어려움을 해결할 수 있는 방법을 제시하여 기존 시스템들이 가지고 있는 문제점을 해결하고자 하였다. 그 결과 프로그래밍 언어 교육 과정에서 발생하는 수준별 단계별 학습에 맞는 프로그래밍 문제 제공의 어려움을 해결하고, 학습자의 자기주도적 학습을 유도하는 학습자 중심의 교수 학습 방법에 기반을 둔 이러닝 학습 환경을 제공함으로써 학습의 질을 높일 수 있는 방안을 제시할 수 있다는 데에 본 연구의 의의가 있다고 할 수 있다.
웹 기술의 빠른 성장과 더불어, 웹은 다양한 측면에서 우리의 삶뿐만 아니라 교육과 학습을 변화시켰다. 웹 기반 학습은 자기 주도적 학습과 창의적 학습을 언제 어디서나 지원해 줄 수 있게 되었지만 학습 내용들로 구성되는 하이퍼 공간의 구조가 복잡할 경우 학습자들은 방향 감각 상실이나 인지 과부하를 경험할 수도 있다. 본 논문에서는 인지적 부하 이론을 근거로 초보자들이 프로그래밍 학습을 한 때 경험할 수 있는 인지 부하를 줄일 수 있는 웹 기반 적응형 하이퍼미디어 시스템을 설계하고 구현하였다.
VoD(Video on Demand) 시스템의 작업과정을 주기적으로 모니터링하며, 작업부하(workload)를 동적으로 조정할 수 있는 에이전트 시스템(agent system)은 VoD 시스템과 인터페이스를 하는 에이전시(Agency) 부분과 작업부하 조정에 필요한 조치를 추론하거나 학습하는 인텔리전스(Intelligence) 부분으로 구성된다. 본 연구에서는 에이전트 시스템의 인텔리전스 부분에서 적용할 수 있는 학습 방법(learning method)을 제안하였다. 제안된 방법은 규칙의 추론과정과 사례기반 학습 과정에 의하여 작업부하를 보다 효율적으로 조정할 수 있게 한다. 그리고 제안된 방법을 VoD 시스템에 적용하는 경우에 실효성이 있는지를 시뮬레이터를 구현하여 실험하였다. 실험의 결과, 제안된 방법을 적용하는 경우에 기존의 방법을 적용한 경우보다 상대적으로 성공적인 스트림 서비스 처리량(throughput) 과 VoD 서버에서의 평균 대기시간이 향상된다는 것을 알 수 있었다.
일반적인 WBI가 제공하는 공간 속에서 하이퍼미디어 기술을 도입하여 학습자가 학습에 대한 선택의 자유를 가지며, 또한 자기 나름대로 학습의 평가하는 개별화 교수-학습 환경을 제공한다. RC2 시스템은 기본적으로 클라이언트-서버 모델이며, LCPG 모델을 기반으로 하는 학습진행 및 학습평가 알고리즘을 제공하고 학습자 개개인의 특성에 맞는 동적인 재학습 메커니즘을 제시한다. 또한 웹을 통한 코스웨어 저작자인 교사에게 편리한 인터페이스를 제공하기 위한 학습 에디터를 지원한다.
본 연구에서는 웹기반 프로젝트 학습 활동을 지원하는 실시간 화상학습시스템을 설계 구현하고 현장에 적용하였다. 또한 실시간 화상학습시스템 활용 수업의 효과를 검증하기 위하여 교실환경검사도구인 WIHIC를 투입하여 학생들의 교실 환경에 대한 인식에 어떠한 변화가 있는가를 조사하고 그 결과를 분석하였다. 웹기반 프로젝트 학습 활동을 통한 실시간 화상학습시스템의 활용은 교실 환경 8개 영역(학생들의 단결, 교사의 지원, 수업에의 참여, 자율성, 탐구 활동, 과제지향, 협동성, 평등) 에서 학생들의 인식 변화에 긍정적인 효과가 있는 것으로 나타났으며, 본 시스템을 통하여 학생들의 자기주도적 학습력 및 ICT 활용 능력 함양, 소집단 협동 학습에서의 토론 활동의 활성화에 도움을 줄 수 있을 것으로 기대된다.
이 논문에서는 학습자가 가상현실 안에서 음성으로 원어민 캐릭터와 대화하는 영어 대화 학습 시스템을 제안한다. 제안 시스템에서 사용자는 다양한 시나리오의 가상현실 상황에서 대화를 한다. 시스템은 사용자의 음성을 인식하고, 음성 합성을 이용하여 캐릭터의 음성을 제공한다. 몰입감과 현실감 있는 환경을 제공하는 가상현실 환경을 통해 영어 대화하는 과정에서 학습의 발음을 평가한 정보를 학습자에게 피드백으로 제공한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.