• Title/Summary/Keyword: Computer aided design

Search Result 1,322, Processing Time 0.029 seconds

Biomechanical three-dimensional finite element analysis of monolithic zirconia crown with different cement type

  • Ha, Seung-Ryong
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.6
    • /
    • pp.475-483
    • /
    • 2015
  • PURPOSE. The objective of this study was to evaluate the influence of various cement types on the stress distribution in monolithic zirconia crowns under maximum bite force using the finite element analysis. MATERIALS AND METHODS. The models of the prepared #46 crown (deep chamfer margin) were scanned and solid models composed of the monolithic zirconia crown, cement layer, and prepared tooth were produced using the computer-aided design technology and were subsequently translated into 3-dimensional finite element models. Four models were prepared according to different cement types (zinc phosphate, polycarboxylate, glass ionomer, and resin). A load of 700 N was applied vertically on the crowns (8 loading points). Maximum principal stress was determined. RESULTS. Zinc phosphate cement had a greater stress concentration in the cement layer, while polycarboxylate cement had a greater stress concentration on the distal surface of the monolithic zirconia crown and abutment tooth. Resin cement and glass ionomer cement showed similar patterns, but resin cement showed a lower stress distribution on the lingual and mesial surface of the cement layer. CONCLUSION. The test results indicate that the use of different luting agents that have various elastic moduli has an impact on the stress distribution of the monolithic zirconia crowns, cement layers, and abutment tooth. Resin cement is recommended for the luting agent of the monolithic zirconia crowns.

The Fabrication and Characteristic Experiment of a Heater-Trigger type High-Tc Superconducting Power Supply (히터트리거를 이용한 고온초전도전원장치의 제작 및 특성 실험에 관한 연구)

  • Yoon, Yong-Soo;Kim, Ho-Min;Chu, Yong;Lee, Chang-Yul;Ko, Tae-Kuk;Han, Tae-Su
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.9
    • /
    • pp.484-489
    • /
    • 1999
  • This paper deals with the design and fabrication of a heater-trigger type high-Tc superconducting power supply system, and characteristics have been analyzed through experiments. The high-Tc superconducting power supply consists of two heater trigger and electric magnet, and YBCO superconducting bulk. In this experiment, 0.6T class magnet and dc 2.3A heater current are used, and the current-pumping characteristics have been analyzed with computer aided sequence control system. Hall sensors are installed on the YBCO bulk and in the center of iron core in order to analyze the effect of the flux-pumping on the system with when magnet flux changes its value. In this experiment, maximum pumping-current has been achieved to about 6.6 amps.

  • PDF

The Study on Weight Reduction of Vehicle for Shell Eco-marathon (Shell Eco-marathon을 위한 자작 자동차 경량화 연구)

  • Cho, Byung-kwan;Jeon, Seong-min;Lee, Dae-kwon;Lee, Sun-ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.5
    • /
    • pp.575-580
    • /
    • 2016
  • This paper sought to find a way to improve the fuel consumption rate of a vehicle for the Shell Eco-marathon Asia 2014, with a special focus on the correlation between vehicle dynamics, aerodynamics and chassis weight reduction. In 'KUTY-Eco 1' designed for SEM Asia 2014, a chassis made with an aluminum alloy tube, semi-monocoque structure and a pivot steering system were adopted to reduce weight and to secure better performance. The goals were achieved using computer-aided engineering(CAE) and parameter study. Finally, 'KUTY-Eco 1' was created, the lightest car in the competition's prototype petrol(gasoline) type category. 'KUTY-Eco 1' secured the official record of 142.7 km/liter during the competition.

Characteristic Study of X-ray convert material by Monte Carlo Simulation (몬테카를로 시뮬레이션을 이용한 X선 변환물질의 특성 연구)

  • Kim, Jin-Young;Park, Ji-Koon;Kang, Sang-Sik;Kim, So-Young;Jung, Eun-Sun;Nam, Sang-Hee;Kang, Sin-Won
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.418-421
    • /
    • 2003
  • Today, much terminologies such as noise spectrum, Sharpness, contrast, MTF had been defined for Image quality revaluation of radiation Image. Since development of Xeroradiography In the 1970s, Digital radiation detector that use amorphous selenium was developed. The aim of this research is to analyze physical phenomenon of digital radiation detector that use amorphous selenium. Result of Monte Carlo simulations on amorphous selenium based on physical properties(creation of electron-hole pairs) by induced x-ray are described. From the simulation, intrinsic point spread function(PSF) was found and used to observe modulation transfer function(MTF). We investigated how PSF and MTF changed with various x-ray energy. This result can be used to design digital x-ray detector based on a-Se.

  • PDF

An Optimal Placement of passive Constrained Layer Damping Treatment for Vibration Suppression of Automotive Roof (차량루프의 진동저감을 위한 수동구속감쇠처리의 위치 최적화)

  • Lee, Ki-Hwa;Kim, Chan-Mook;Kang, Young-Kyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.349-353
    • /
    • 2004
  • A study on optimal placement of constrained layer damping treatment for vibration control of automotive panels is presented. The effectiveness of damping treatment depends upon design parameters such as choice of damping materials, locations and size of the treatment. This paper proposes a CAE (Computer Aided Engineering) methodology based on finite element analysis to optimize damping treatment. From the equivalent modeling technique, it is found that the best damping performance occurs as the viscoelstic patch is placed by means of the modal strain energy method of bare structural panels to identify flexible regions, which in turn facilitates optimizations of damping treatment with respect to location and size. Different configurations of partially applied damping layer treatment have been analyzed for their effectiveness in realizing maximum system damping with minimum mass of the applied damping material. Moreover, simulated frequency response function of the automotive roof with and without damping treatments are compared, which show the benefits of applying damping treatment. Finally, the optimized damping treatment configuration is validated by comparing the locations and the size of the treatment with that of an experimental modal test conducted on roof compartment.

  • PDF

Experimental Analysis of Clutch-Fill Parameters for Automatic Transmission (자동변속기 클러치 충전제어 파라미터의 실험적 특성분석)

  • Jung, G.H.;Park, D.H.
    • Journal of Drive and Control
    • /
    • v.11 no.3
    • /
    • pp.47-54
    • /
    • 2014
  • Clutches are an integral part of the automatic transmission for changing gears. Modern automatic transmissions make extensive use of wet multiple-disc clutches employing hydraulic actuation mechanism with electronic control. Although nowadays, highly advanced shifting algorithm implements the superior shift quality and transmission efficiency, its performance should be based on smooth, reliable engagement with a reasonably durable friction material as well as stable clutch piston dynamics. Particularly, clutch filling control is the crucial part of shifting process because only the open-loop control is available due to the lack of measurement. In this paper, the effect of clutch-fill control parameters on clutch piston dynamics is experimentally investigated by using clutch piston test equipment which enables the clutch piston to actuate similar to real shifting conditions. The experimental analysis results can be expected to be utilized for the calibration of proportional solenoid valve as reference current profile data in vehicle test.

Mandibular reconstruction using customized three-dimensional titanium implant

  • Lee, Yun-Whan;You, Hi-Jin;Jung, Jae-A;Kim, Deok-Woo
    • Archives of Craniofacial Surgery
    • /
    • v.19 no.2
    • /
    • pp.152-156
    • /
    • 2018
  • Mandibular defects lead to severe deformation and functional deficiency. Vascularized osteocutaneous tissue has been widely used to reconstruct the mandible. However, it is technically challenging to shape this type of grafts in such a manner that they resemble the configuration of the mandible. A 48-year-old female patient who underwent anterolateral thigh (ALT) flap coverage after a tongue cancer excision was diagnosed with a tumor recurrence during the follow-up. A wide excision mandibulectomy and mandibular reconstruction with an ALT flap and a titanium implant were performed. The prefabricated titanium implant was fixed to the condyle. Then, an ALT flap was harvested from the ipsilateral thigh and anastomosed. After confirming that the circulation of the flap was intact, the implant was fixed to the parasymphysis. On the radiograph taken after the surgery, the prosthesis was well positioned and overall facial shape was acceptable. There was no postoperative complication during the follow-up period, 1 year and 2 months. The prefabricated implant allows the restoration of facial symmetry without harvesting autologous bone and it is a safe and effective surgical option for mandibular reconstruction.

Fast fabrication of amphibious bus with low rollover risk: Toward well-structured bus-boat using truck chassis

  • Mehrmashhadi, Javad;Mallet, Philippe;Michel, Paul;Yousefi, Amin Termeh
    • Smart Structures and Systems
    • /
    • v.24 no.4
    • /
    • pp.427-434
    • /
    • 2019
  • This study investigates the structural integrity of the amphibious tour bus under the rollover condition. The multi-purpose bus called Dual Mode Tour Bus (DMTB) which explores on land and water has been designed on top of a truck platform. Prior to the fabrication of new upper body and sailing equipment of DMTB, computational analysis investigates the rollover protection of the proposed structure including superstructure, wheels, and axles. The Computer-Aided Design (CAD) of the whole vehicle model is meshed and preprocessed under high performance using the Altair HyperMesh to attain the best mesh model suited for finite element analysis (FEA) on the proposed system. Meanwhile, the numerical model is analyzed by employing LS-DYNA to evaluate the superstructure strength. The numerical model includes detail information about the microstructure and considers wheels and axles as rigid bodies but excludes window glasses, seats, and interior parts. Based on the simulation analysis and proper modifications especially on the rear portion of the bus, the local stiffness significantly increased. The vehicle is rotated to the contact point on the ground based on the mathematical method presented in this study to save computational cost. The results show that the proposed method of rollover analysis is highly significant not only in bus rollover tests but in crashworthiness studies for other application. The critical impartments in our suggested dual-purpose bus accepted and passed "Economic Commission for Europe (ECE) R66".

Problem Solving about Practical Engineering Education based on Analysis on Optimized Internal Flow of LTP Furnace and Uniformity of Temperature (LTP 퍼니스의 내부 유동 및 온도 균일도 최적화를 위한 실천공학교육적 문제해결)

  • Kim, Jin-woo;Youn, Gi-man;Jo, Eunjeong
    • Journal of Practical Engineering Education
    • /
    • v.10 no.2
    • /
    • pp.125-129
    • /
    • 2018
  • This paper is about the numerical analysis on optimized internal flow of LTP furnace and uniformity of temperature. The LTP Furnace is the device that generates heat by electricity. And performs an annealing function for annealing the silicon wafer in the pre-semiconductor manufacturing process. Especially, the maximum temperature inside the chamber is maintained at a high temperature of about $400^{\circ}C$ to strengthen the wafer. When the process is completed at high temperature, the operation is repeated to reduce the temperature through the heat exchanger and carry it out. From this analysis, the ultimate goal is to derive the optimum design of the insulation volume supply/exhaust structure of the chamber through the flow analysis of the LTPS furnace. And to find cases for curriculum development.

Structural Analysis of Door Safety Device (도어 안전장치의 구조해석)

  • Lee, Jong-sun
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.9
    • /
    • pp.173-177
    • /
    • 2019
  • This study is door safety device for the structural analysis are described. Recently emerged as a key point of the door safety and increase the need of a door safety device. In order to improvement this inconvenience, the door safety device was design and structural analysis by using CATIA. CATIA utilizes door safety device element model for displacement, stress and strain energy were obtained. Consideration of door open angles were $95^{\circ}$, $100^{\circ}$, $105^{\circ}$, $110^{\circ}$, $115^{\circ}$, $120^{\circ}$. These results will be provided to develop new concepts of door safety device as initial data.