• Title/Summary/Keyword: Computer Vision

Search Result 2,208, Processing Time 0.025 seconds

A Blocking Algorithm of a Target Object with Exposed Privacy Information (개인 정보가 노출된 목표 객체의 블로킹 알고리즘)

  • Jang, Seok-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.43-49
    • /
    • 2019
  • The wired and wireless Internet is a useful window to easily acquire various types of media data. On the other hand, the public can easily get the media data including the object to which the personal information is exposed, which is a social problem. In this paper, we propose a method to robustly detect a target object that has exposed personal information using a learning algorithm and effectively block the detected target object area. In the proposed method, only the target object containing the personal information is detected using a neural network-based learning algorithm. Then, a grid-like mosaic is created and overlapped on the target object area detected in the previous step, thereby effectively blocking the object area containing the personal information. Experimental results show that the proposed algorithm robustly detects the object area in which personal information is exposed and effectively blocks the detected area through mosaic processing. The object blocking method presented in this paper is expected to be useful in many applications related to computer vision.

Adaptive V1-MT model for motion perception

  • Li, Shuai;Fan, Xiaoguang;Xu, Yuelei;Huang, Jinke
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.371-384
    • /
    • 2019
  • Motion perception has been tremendously improved in neuroscience and computer vision. The baseline motion perception model is mediated by the dorsal visual pathway involving the cortex areas the primary visual cortex (V1) and the middle temporal (V5 or MT) visual area. However, few works have been done on the extension of neural models to improve the efficacy and robustness of motion perception of real sequences. To overcome shortcomings in situations, such as varying illumination and large displacement, an adaptive V1-MT motion perception (Ad-V1MTMP) algorithm enriched to deal with real sequences is proposed and analyzed. First, the total variation semi-norm model based on Gabor functions (TV-Gabor) for structure-texture decomposition is performed to manage the illumination and color changes. And then, we study the impact of image local context, which is processed in extra-striate visual areas II (V2), on spatial motion integration by MT neurons, and propose a V1-V2 method to extract the image contrast information at a given location. Furthermore, we take feedback inputs from V2 into account during the polling stage. To use the algorithm on natural scenes, finally, multi-scale approach has been used to handle the frequency range, and adaptive pyramidal decomposition and decomposed spatio-temporal filters have been used to diminish computational cost. Theoretical analysis and experimental results suggest the new Ad-V1MTMP algorithm which mimics human primary motion pathway has universal, effective and robust performance.

Symbol recognition using vectorial signature matching for building mechanical drawings

  • Cho, Chi Yon;Liu, Xuesong;Akinci, Burcu
    • Advances in Computational Design
    • /
    • v.4 no.2
    • /
    • pp.155-177
    • /
    • 2019
  • Operation and Maintenance (O&M) phase is the main contributor to the total lifecycle cost of a building. Previous studies have described that Building Information Models (BIM), if available with detailed asset information and their properties, can enable rapid troubleshooting and execution of O&M tasks by providing the required information of the facility. Despite the potential benefits, there is still rarely BIM with Mechanical, Electrical and Plumbing (MEP) assets and properties that are available for O&M. BIM is usually not in possession for existing buildings and generating BIM manually is a time-consuming process. Hence, there is a need for an automated approach that can reconstruct the MEP systems in BIM. Previous studies investigated automatic reconstruction of BIM using architectural drawings, structural drawings, or the combination with photos. But most of the previous studies are limited to reconstruct the architectural and structural components. Note that mechanical components in the building typically require more frequent maintenance than architectural or structural components. However, the building mechanical drawings are relatively more complex due to various type of symbols that are used to represent the mechanical systems. In order to address this challenge, this paper proposed a symbol recognition framework that can automatically recognize the different type of symbols in the building mechanical drawings. This study applied vector-based computer vision techniques to recognize the symbols and their properties (e.g., location, type, etc.) in two vector-based input documents: 2D drawings and the symbol description document. The framework not only enables recognizing and locating the mechanical component of interest for BIM reconstruction purpose but opens the possibility of merging the updated information into the current BIM in the future reducing the time of repeated manual creation of BIM after every renovation project.

NFC antenna modeling and design for position information collecting of steel pallet for screw transfer (나사 이송용 철재 파렛트의 위치 정보 수집을 위한 NFC 안테나 모델링 및 설계)

  • Lee, Eun-kyu;Kim, Dong-wan;Lee, Sang-wan;Kim, Jae-joong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.12
    • /
    • pp.1675-1683
    • /
    • 2018
  • This paper is a study on modeling of an NFC antenna to be inserted into a steel pallet for conveying selected good products through a vision system to a threaded screw from CNC equipment. The CNC equipment used here incorporates the information communication technology (ICT) corresponding to the Internet of Things (IoT), and the smart factory system technology that produces information by exchanging information freely in two directions by connecting the POP corresponding to the service Internet is evolved Equipment. Therefore, it is possible to collect position information on the threaded workpiece by applying NFC antenna designed considering iron pallet used for material management so as to grasp estimated completion time and actual production amount according to production instruction from existing analog type equipment to POP monitoring system And investigated its characteristics.

A Study on Flame Detection using Faster R-CNN and Image Augmentation Techniques (Faster R-CNN과 이미지 오그멘테이션 기법을 이용한 화염감지에 관한 연구)

  • Kim, Jae-Jung;Ryu, Jin-Kyu;Kwak, Dong-Kurl;Byun, Sun-Joon
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1079-1087
    • /
    • 2018
  • Recently, computer vision field based deep learning artificial intelligence has become a hot topic among various image analysis boundaries. In this study, flames are detected in fire images using the Faster R-CNN algorithm, which is used to detect objects within the image, among various image recognition algorithms based on deep learning. In order to improve fire detection accuracy through a small amount of data sets in the learning process, we use image augmentation techniques, and learn image augmentation by dividing into 6 types and compare accuracy, precision and detection rate. As a result, the detection rate increases as the type of image augmentation increases. However, as with the general accuracy and detection rate of other object detection models, the false detection rate is also increased from 10% to 30%.

The Method to Reduce the Driving Time in (sLa-Camera-pRd) type ((sLa-Camera-pRd)타입의 구동시간 단축 방법)

  • Kim, Soon-Ho;Kim, Chi-Su
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.12
    • /
    • pp.1-7
    • /
    • 2018
  • Gentry is responsible for moving the fine chip in the device that mounts the chip on the PCB. However, it is not easy to increase productivity because of the mechanical limitations of the gantry. Therefore, in this paper, we try to solve the method to increase the productivity by software. For this purpose, we propose a method to improve the productivity by shortening the movement time of the gantry. First, we calculated the total travel time for the current method(stop-motion). In addition, the total travel time is also calculated for the travel time reduction method presented in this paper. This method reduces the travel time by checking parts without stopping in front of the camera. As a result, we showed that the proposed method shortened the time of 16%. In the future, we will study time calculation methods for other types.

Robust Hand Region Extraction Using a Joint-based Model (관절 기반의 모델을 활용한 강인한 손 영역 추출)

  • Jang, Seok-Woo;Kim, Sul-Ho;Kim, Gye-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.525-531
    • /
    • 2019
  • Efforts to utilize human gestures to effectively implement a more natural and interactive interface between humans and computers have been ongoing in recent years. In this paper, we propose a new algorithm that accepts consecutive three-dimensional (3D) depth images, defines a hand model, and robustly extracts the human hand region based on six palm joints and 15 finger joints. Then, the 3D depth images are adaptively binarized to exclude non-interest areas, such as the background, and accurately extracts only the hand of the person, which is the area of interest. Experimental results show that the presented algorithm detects only the human hand region 2.4% more accurately than the existing method. The hand region extraction algorithm proposed in this paper is expected to be useful in various practical applications related to computer vision and image processing, such as gesture recognition, virtual reality implementation, 3D motion games, and sign recognition.

Design and Implementation of Feature Detector for Object Tracking (객체 추적을 위한 특징점 검출기의 설계 및 구현)

  • Lee, Du-hyeon;Kim, Hyeon;Cho, Jae-chan;Jung, Yun-ho
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.207-213
    • /
    • 2019
  • In this paper, we propose a low-complexity feature detection algorithm for object tracking and present hardware architecture design and implementation results for real-time processing. The existing Shi-Tomasi algorithm shows good performance in object tracking applications, but has a high computational complexity. Therefore, we propose an efficient feature detection algorithm, which can reduce the operational complexity with the similar performance to Shi-Tomasi algorithm, and present its real-time implementation results. The proposed feature detector was implemented with 1,307 logic slices, 5 DSP 48s and 86.91Kbits memory with FPGA. In addition, it can support the real-time processing of 54fps at an operating frequency of 114MHz for $1920{\times}1080FHD$ images.

Study on Co-Simulation Method of Dynamics and Guidance Algorithms for Strap-Down Image Tracker Using Unity3D (Unity3D를 이용한 스트랩 다운 영상 추적기의 동역학 및 유도 법칙 알고리즘의 상호-시뮬레이션 방법에 관한 연구)

  • Marin, Mikael;Kim, Taeho;Bang, Hyochoong;Cho, Hanjin;Cho, Youngki;Choi, Yonghoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.11
    • /
    • pp.911-920
    • /
    • 2018
  • In this study, we performed a study to track the angle between the guided weapon and the target by using the strap-down image seeker, and constructed a test bed that can simulate it visually. This paper describes a method to maintain high-performance feature distribution in the implementation of sparse feature tracking algorithm such as Lucas Kanade's optical flow algorithm for target tracking using image information. We have extended the feature tracking problem to the concept of feature management. To realize this, we constructed visual environment using Unity3D engine and developed image processing simulation using OpenCV. For the co-simulation, dynamic system modeling was performed with Matlab Simulink, the visual environment using Unity3D was constructed, and computer vision work using OpenCV was performed.

Analysis of Drought Vulnerable Areas using Neural-Network Algorithm (인공신경망 알고리즘을 활용한 가뭄 취약지역 분석)

  • Shin, Jeong Hoon;Kim, Jun Kyeong;Yeom, Min Kyo;Kim, Jin Pyeong
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.2
    • /
    • pp.329-340
    • /
    • 2021
  • Purpose: In this paper, using artificial neural network algorithm, the Korean Peninsula was analyzed for drought vulnerable areas by predicting weather data changes. Method: Monthly cumulative precipitation data were utilized for research areas considering the specific nature areas, and weather data prediction through artificial neural network algorithm was carried out using statistical program R. The predicted data were applied to the Standardized Precipitation Index (SPI) to analyze drought vulnerable areas in the Korean Peninsula. Result: In this paper, the correlation coefficient values between real and predicted data are found to be 0.043879 higher on average than the regression results, using artificial neural network algorithms. Conclusion: The results of the research are expected to be used as basic research materials for responding to drought.