• Title/Summary/Keyword: Computer Principal

Search Result 461, Processing Time 0.026 seconds

IKPCA-ELM-based Intrusion Detection Method

  • Wang, Hui;Wang, Chengjie;Shen, Zihao;Lin, Dengwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.7
    • /
    • pp.3076-3092
    • /
    • 2020
  • An IKPCA-ELM-based intrusion detection method is developed to address the problem of the low accuracy and slow speed of intrusion detection caused by redundancies and high dimensions of data in the network. First, in order to reduce the effects of uneven sample distribution and sample attribute differences on the extraction of KPCA features, the sample attribute mean and mean square error are introduced into the Gaussian radial basis function and polynomial kernel function respectively, and the two improved kernel functions are combined to construct a hybrid kernel function. Second, an improved particle swarm optimization (IPSO) algorithm is proposed to determine the optimal hybrid kernel function for improved kernel principal component analysis (IKPCA). Finally, IKPCA is conducted to complete feature extraction, and an extreme learning machine (ELM) is applied to classify common attack type detection. The experimental results demonstrate the effectiveness of the constructed hybrid kernel function. Compared with other intrusion detection methods, IKPCA-ELM not only ensures high accuracy rates, but also reduces the detection time and false alarm rate, especially reducing the false alarm rate of small sample attacks.

Passport Recognition using PCA-based Face Verification and SOM Algorithm (PCA 기반 얼굴 인증과 SOM 알고리즘을 이용한 여권 인식)

  • Lee Sang-Soo;Jang Do-Won;Kim Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.285-290
    • /
    • 2006
  • 본 논문에서는 출입국자 관리의 효율성과 체계적인 출입국 관리를 위하여 여권 코드를 자동으로 인식하고 위조 여권을 판별할 수 있는 여권 인식 및 얼굴 인증 방법을 제안한다. 본 논문의 구성은 여권 인식과 얼굴 인증 부분으로 구성되며, 여권 인식 부분에서는 소벨 연산자, 수평 최소값 필터 등을 적용한 후, 8 방향 윤곽선 추적 알고리즘을 적용하여 코드의 문자열 영역을 추출하고 기울기를 보정한다. 추출된 문자열은 반복 이진화 방법을 적용하여 코드의 문자열 영역을 이진화 한다. 이진화된 문자열 영역에 대해 8 방향 윤곽선 추적 알고리즘을 적용하여 개별 코드를 추출한 후에 SOM(Self-Organizing Maps) 알고리즘을 적용하여 여권 코드를 인식한다. 얼굴 인증 부분에서는 여권 사진 영역의 특징을 이용하여 얼굴 후보 영역을 추출한 후, RGB와 YCbCr 색공간에서 피부색 정보를 이용하여 얼굴 영역을 추출한다. 추출된 얼굴 영역은 PCA(Principal Component Analysis) 알고리즘을 적용하여 특징 벡터를 구하고 여권 코드가 인식된 결과를 바탕으로 여권 소지자의 데이터 베이스에 있는 얼굴 영상의 특징벡터와의 거리 값을 계산하여 사진 위조 여부를 판별한다. 제안된 여권 인식 및 얼굴 인증 방법의 성능 평가를 위하여 원본 여권의 얼굴 부분을 위조한 여권과 기울어진 여권 영상을 대상으로 실험한 결과, 제안된 방법이 여권의 코드 인식 및 얼굴 인증에 있어서 우수한 성능이 있음을 확인하였다.

  • PDF

A Study on the Elementary Computer Science Teaching and Learning the Principle of Saving Bitmap Images by Considering Characteristics of Elementary School (초등학생의 특성을 고려한 비트맵이미지 저장원리 수업을 통한 초등정보과학의 교수학습에 관한 연구)

  • Lee, Mi-Young;Gu, Jung-Mo;Han, Byoung-Rae
    • Journal of The Korean Association of Information Education
    • /
    • v.12 no.4
    • /
    • pp.405-415
    • /
    • 2008
  • In the existing curriculum of the Elementary Computer Education, it is hard to improve the CPS(Creative Problem Solving) skill and logical thought since the 7th national curriculum emphasizes application programs and CAI softwares. To complement this drawback, it is required to teach the principal of the computer science but there is not many researches for what problems of teaching computer science exist and what the response of students are. Thus, we carried out a research to know whether the students of elementary school can understand principal of computer science in the field of subject matter education. We found that the students can learn the principle of Saving Bitmap Image if the class level is adjusted properly.

  • PDF

An Improved Robust Fuzzy Principal Component Analysis (잡음 민감성이 개선된 퍼지 주성분 분석)

  • Heo, Gyeong-Yong;Woo, Young-Woon;Kim, Seong-Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.5
    • /
    • pp.1093-1102
    • /
    • 2010
  • Principal component analysis (PCA) is a well-known method for dimension reduction while maintaining most of the variation in data. Although PCA has been applied to many areas successfully, it is sensitive to outliers. Several variants of PCA have been proposed to resolve the problem and, among the variants, robust fuzzy PCA (RF-PCA) demonstrated promising results. RF-PCA uses fuzzy memberships to reduce the noise sensitivity. However, there are also problems in RF-PCA and the convergence property is one of them. RF-PCA uses two different objective functions to update memberships and principal components, which is the main reason of the lack of convergence property. The difference between two functions also slows the convergence and deteriorates the solutions of RF-PCA. In this paper, a variant of RF-PCA, called RF-PCA2, is proposed. RF-PCA2 uses an integrated objective function both for memberships and principal components. By using alternating optimization, RF-PCA2 is guaranteed to converge on a local optimum. Furthermore, RF-PCA2 converges faster than RF-PCA and the solutions found are more similar to the desired solutions than those of RF-PCA. Experimental results also support this.

The Kernel Trick for Content-Based Media Retrieval in Online Social Networks

  • Cha, Guang-Ho
    • Journal of Information Processing Systems
    • /
    • v.17 no.5
    • /
    • pp.1020-1033
    • /
    • 2021
  • Nowadays, online or mobile social network services (SNS) are very popular and widely spread in our society and daily lives to instantly share, disseminate, and search information. In particular, SNS such as YouTube, Flickr, Facebook, and Amazon allow users to upload billions of images or videos and also provide a number of multimedia information to users. Information retrieval in multimedia-rich SNS is very useful but challenging task. Content-based media retrieval (CBMR) is the process of obtaining the relevant image or video objects for a given query from a collection of information sources. However, CBMR suffers from the dimensionality curse due to inherent high dimensionality features of media data. This paper investigates the effectiveness of the kernel trick in CBMR, specifically, the kernel principal component analysis (KPCA) for dimensionality reduction. KPCA is a nonlinear extension of linear principal component analysis (LPCA) to discovering nonlinear embeddings using the kernel trick. The fundamental idea of KPCA is mapping the input data into a highdimensional feature space through a nonlinear kernel function and then computing the principal components on that mapped space. This paper investigates the potential of KPCA in CBMR for feature extraction or dimensionality reduction. Using the Gaussian kernel in our experiments, we compute the principal components of an image dataset in the transformed space and then we use them as new feature dimensions for the image dataset. Moreover, KPCA can be applied to other many domains including CBMR, where LPCA has been used to extract features and where the nonlinear extension would be effective. Our results from extensive experiments demonstrate that the potential of KPCA is very encouraging compared with LPCA in CBMR.

SEQUENTIAL EM LEARNING FOR SUBSPACE ANALYSIS

  • Park, Seungjin
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.698-701
    • /
    • 2002
  • Subspace analysis (which includes PCA) seeks for feature subspace (which corresponds to the eigenspace), given multivariate input data and has been widely used in computer vision and pattern recognition. Typically data space belongs to very high dimension, but only a few principal components need to be extracted. In this paper I present a fast sequential algorithm for subspace analysis or tracking. Useful behavior of the algorithm is confirmed by numerical experiments.

  • PDF

A Study on the Image Analysis used by Color Distribution (색상분포에 대한 이미지 분석에 관한 연구)

  • Park, Hyeon-Geun;Lee, Hee-Suk;Jang, Il-Ki;Lee, Sang-Moon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2012.01a
    • /
    • pp.69-72
    • /
    • 2012
  • 영상처리 기법을 이용한 이미지 인식에 관한 콘텐츠들은 다양한 알고리즘을 사용하고 있다. 영상처리 기법 중 이미지 인식 기법에는 대표적으로 PCA(Principal Component Analysis)알고리즘이 있으며, 이 알고리즘에 적용된 대표적인 콘텐츠로 얼굴 문자인식이 있다. 이 알고리즘은 정확성을 위하여 학습을 통한 영상의 저장과 인식을 통한 복잡한 알고리즘을 사용한다. 복잡한 알고리즘의 사용으로 간단한 이미지 인식 콘텐츠의 경우 시스템 처리속도에 영향을 줄 수 있다. 따라서 이 논문에서는 색상의 분포를 통하여 그 수치를 이용한 이미지를 분석한 실험을 통하여 간단한 이미지인식 시스템을 위한 알고리즘을 제시하고, 이 알고리즘을 통해서 얻을 수 있는 장 단점을 분석하였다.

  • PDF

An Image Recognition Algorithm using Comparative Operations (비교연산을 통한 이미지 인식에 관한 연구)

  • Park, Hyeon-Geun;An, Young-Ki;Jang, Il-Ki;Lee, Hee-Suk;Lee, Sang-Moon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2011.06a
    • /
    • pp.31-34
    • /
    • 2011
  • 영상처리 기법을 이용한 이미지 인식에 관한 컨텐츠들은 아주 다양한 알고리즘을 사용하였다. 영상처리 기법에서 이미지 인식기법 중에서 일반적인 것으로는 PCA(Principal Component Analysis) 알고리즘이 있다. 이 알고리즘이 적용된 대표적인 컨텐츠로는 얼굴 문자인식이 있다. 이 알고리즘은 정확성을 위하여 학습을 통한 영상의 저장과 인식을 통한 복잡한 알고리즘을 사용한다. 간단한 이미지 인식 컨텐츠의 경우에 복잡한 알고리즘을 사용함으로써, 시스템 처리속도에 영향을 줄 수 있다. 따라서 이 논문에서는 비교연산을 수행하는 히스토그램 매칭을 두 가지 실험 방법을 통하여, 간단한 이미지인식 시스템을 위한 알고리즘을 설계한 것이다.

  • PDF

A Study on the Detection Method of Red Tide Area in South Coast using Landsat Remote Sensing (Landsat 위성자료를 이용한 남해안 적조영역 검출기법에 관한 연구)

  • Sur, Hyung-Soo;Song, In-Ho;Lee, Chil-Woo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.4
    • /
    • pp.129-141
    • /
    • 2006
  • The image data amount is increasing rapidly that used geography, sea information etc. with great development of a remote sensing technology using artificial satellite. Therefore, people need automatic method that use image processing description than macrography for analysis remote sensing image. In this paper, we propose that acquire texture information to use GLCM(Gray Level Co-occurrence Matrix) in red tide area of artificial satellite remote sensing image, and detects red tide area by PCA(principal component analysis) automatically from this data. Method by sea color that one feature of remote sensing image of existent red tide area detection was most. but in this paper, we changed into 2 principal component accumulation images using GLCM's texture feature information 8. Experiment result, 2 principal component accumulation image's variance percentage is 90.4%. We compared with red tide area that use only sea color and It is better result.

  • PDF

Comparison of recognition rate with distance on stereo face images base PCA (PCA기반의 스테레오 얼굴영상에서 거리에 따른 인식률 비교)

  • Park Chang-Han;Namkung Jae-Chan
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.1
    • /
    • pp.9-16
    • /
    • 2005
  • In this paper, we compare face recognition rate by distance change using Principal Component Analysis algorithm being input left and right image in stereo image. Change to YCbCr color space from RGB color space in proposed method and face region does detection. Also, after acquire distance using stereo image extracted face image's extension and reduce do extract robust face region, experimented recognition rate by using PCA algorithm. Could get face recognition rate of 98.61%(30cm), 98.91%(50cm), 99.05%(100cm), 99.90%(120cm), 97.31%(150cm) and 96.71%(200cm) by average recognition result of acquired face image. Therefore, method that is proposed through an experiment showed that can get high recognition rate if apply scale up or reduction according to distance.