• Title/Summary/Keyword: Computer Code Optimization

Search Result 102, Processing Time 0.023 seconds

Cost Minimization of Solidity Smart Contracts on Blockchain Systems

  • Lee, Wan Yeon
    • International journal of advanced smart convergence
    • /
    • v.9 no.2
    • /
    • pp.157-163
    • /
    • 2020
  • Recently the blockchain technology has been actively studied due to its great potentiality. The smart contract is a key mechanism of the blockchain system. Due to the short history of the smart contract, many issues have not been solved yet. One main issue is vulnerability and another main issue is cost optimization. While the vulnerability of smart contract has been actively studied, the cost optimization has been rarely studied. In this paper, we propose two cost optimization methods for smart contracts running on the blockchain system. Triggering a function in a smart contract program code may require costs and it is repeated continuously. So the minimization of costs required to trigger a function of smart contract while maintaining the performance equally is very important. The proposed two methods minimize the usage of expensive permanent variables deployed on the blockchain system. We apply the proposed two methods to three prevalent blockchain platforms: Ethereum, Klaytn and Tron. Evaluation experiments verify that the proposed scheme significantly reduces the costs of functions in the smart contract written with Solidity.

Validation of a CFD model for hydraulic seals

  • Roy, Vincent Le;Guibault, Francois;Vu, Thi C.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.400-408
    • /
    • 2009
  • Optimization of seal geometries can reduce significantly the energetic losses in a hydraulic seal [1], especially for high head runner turbine. In the optimization process, a reliable prediction of the losses is needed and CFD is often used. This paper presents numerical experiments to determine an adequate CFD model for straight, labyrinth and stepped hydraulic seals used in Francis runners. The computation is performed with a finite volume commercial CFD code with a RANS low Reynolds turbulence model. As numerical computations in small radial clearances of hydraulic seals are not often encountered in the literature, the numerical results are validated with experimental data on straight seals and labyrinth seals. As the validation is satisfactory enough, geometrical optimization of hydraulic seals using CFD will be studied in future works.

Optimization of LDPC Code Replication Scheme for Cluster File System (클러스터 파일 시스템을 위한 LDPC 코드 복제 기법 최적화)

  • Kim, Se-Hoe;Lee, Won-Joo;Jeon, Chang-Ho
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2010.07a
    • /
    • pp.15-16
    • /
    • 2010
  • 최근 이슈가 되고 있는 클라우드 컴퓨팅은 대용량의 데이터를 분산 저장하고 제공할 수 있는 클러스터 파일 시스템을 필요로 한다. 이러한 클러스터 파일 시스템은 높은 신뢰성과 고가용성을 보장하기 위해서 파일 복제 기법을 사용하고 있다. 가장 많이 쓰이고 있는 복제 기법은 전체-파일 복제 기법으로 높은 파일 가용성을 제공하지만 그만큼 스토리지 오버헤드가 크다는 단점이 있다. 또 다른 복제 기법으로는 LDPC 코드를 이용한 것으로 비교적 적은 스토리지 오버헤드를 가지면서 동시에 비슷한 수준의 파일 가용성을 제공한다. 따라서 본 논문에서는 클러스터 파일 시스템을 위한 LDPC 코드 복제 기법의 최적화 방법을 제안한다.

  • PDF

A Cross-Layer Unequal Error Protection Scheme for Prioritized H.264 Video using RCPC Codes and Hierarchical QAM

  • Chung, Wei-Ho;Kumar, Sunil;Paluri, Seethal;Nagaraj, Santosh;Annamalai, Annamalai Jr.;Matyjas, John D.
    • Journal of Information Processing Systems
    • /
    • v.9 no.1
    • /
    • pp.53-68
    • /
    • 2013
  • We investigate the rate-compatible punctured convolutional (RCPC) codes concatenated with hierarchical QAM for designing a cross-layer unequal error protection scheme for H.264 coded sequences. We first divide the H.264 encoded video slices into three priority classes based on their relative importance. We investigate the system constraints and propose an optimization formulation to compute the optimal parameters of the proposed system for the given source significance information. An upper bound to the significance-weighted bit error rate in the proposed system is derived as a function of system parameters, including the code rate and geometry of the constellation. An example is given with design rules for H.264 video communications and 3.5-4 dB PSNR improvement over existing RCPC based techniques for AWGN wireless channels is shown through simulations.

Optimization of Geometries and Optical properties in PDP Cells

  • Jung, Sung-Wook;Choi, Hye-Rim;Oh, Myung-Hwan;Kang, Jung-Won
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.894-897
    • /
    • 2006
  • The detailed studies regarding to the front and rear panel geometries and optical properties of composed layers were needed to improve the luminance and efficiency. 3-dimensional optical code can be used to analyze the variation of geometries and the changing of optical properties. The visible light distributions and illuminance results were simulated depending on the bus electrode position, ITO geometries and optical properties of dielectric layer. As the ITO area was decreased and the bus electrode was located at the outer part of cell, the illumination was increased. And we could find quantification which is related between dielectric layer and visible light distribution of PDP cell.

  • PDF

The Optimum Design of Reinforced Concrete Cylindrical Shell Tanks (철근콘크리트 원통 SHELL TANK 에 관한 최적설계)

  • Choi, Yeal;Kang, Moon-Myung;Pulmano, Victor. A.
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.10a
    • /
    • pp.61-66
    • /
    • 1992
  • The present paper deals with the optimum design of reinforced concrete cylindrical shell tanks in according to ACI 318-89 code. The purpose of this investigation is to find the optimum values of the steel ratio and the effective thickness of reinforced concrete cylindrical shell tanks. The analysts is carried out using a simple computer programming, SMAP(segmented matrix analysis package). The optimization is carried out using GINO programming. Optimum results for cylindrical shell tanks with uniform, stepwise and piecewise linealy varying thicknesses are presented.

  • PDF

DEVELOPMENT OF A CORE THERMO-FLUID ANALYSIS CODE FOR PRISMATIC GAS COOLED REACTORS

  • Tak, Nam-Il;Lee, Sung Nam;Kim, Min-Hwan;Lim, Hong Sik;Noh, Jae Man
    • Nuclear Engineering and Technology
    • /
    • v.46 no.5
    • /
    • pp.641-654
    • /
    • 2014
  • A new computer code, named CORONA (Core Reliable Optimization and thermo-fluid Network Analysis), was developed for the core thermo-fluid analysis of a prismatic gas cooled reactor. The CORONA code is targeted for whole-core thermo-fluid analysis of a prismatic gas cooled reactor, with fast computation and reasonable accuracy. In order to achieve this target, the development of CORONA focused on (1) an efficient numerical method, (2) efficient grid generation, and (3) parallel computation. The key idea for the efficient numerical method of CORONA is to solve a three-dimensional solid heat conduction equation combined with one-dimensional fluid flow network equations. The typical difficulties in generating computational grids for a whole core analysis were overcome by using a basic unit cell concept. A fast calculation was finally achieved by a block-wise parallel computation method. The objective of the present paper is to summarize the motivation and strategy, numerical approaches, verification and validation, parallel computation, and perspective of the CORONA code.

A Study on the Optimization of a Spacecraft Structure by Using Coupled Load Analysis Model and Modal Transient Analysis (연성하중해석 모델과 모달과도해석을 이용한 위성체 구조부재의 최적화 연구)

  • Hwang, Do-Soon;Lee, Young-Shin;Kim, In-Gul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.6
    • /
    • pp.34-48
    • /
    • 2004
  • In this paper an optimization algorithm is suggested to reduce the huge computation time in the optimum design of large structures, especially in spacecraft structures. It combines the coupled load analysis model using a constrained mode of component mode synthesis and the modal transient analysis. The computer simulation code is developed and evaluated in optimizing spacecraft platforms. The developed algorithm can alleviate the computational load with adequate accuracy. From the optimization of a spacecraft structural member, the characteristics of each structural member can be understood.

Optimum design of steel space frames under earthquake effect using harmony search

  • Artar, Musa
    • Structural Engineering and Mechanics
    • /
    • v.58 no.3
    • /
    • pp.597-612
    • /
    • 2016
  • This paper presents an optimization process using Harmony Search Algorithm for minimum weight of steel space frames under earthquake effects according to Turkish Earthquake Code (2007) specifications. The optimum designs are carried out by selecting suitable sections from a specified list including W profiles taken from American Institute of Steel Construction (AISC). The stress constraints obeying AISC-Load and Resistance Factor Design (LRFD) specifications, lateral displacement constraints and geometric constraints are considered in the optimum designs. A computer program is coded in MATLAB for the purpose to incorporate with SAP2000 OAPI (Open Application Programming Interface) to perform structural analysis of the frames under earthquake loads. Three different steel space frames are carried out for four different seismic earthquake zones defined in Turkish Earthquake Code (2007). Results obtained from the examples show the applicability and robustness of the method.

Comparative Experiment of FMINS with Nelder-Mead and Dennis-Woods Method (Nelder-Mead, Dennis-Woods Method와 MATLAB의 FMINS의 비교실험)

  • Choe, Yeong-Il;Hyun, Chang-Hun
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.361-368
    • /
    • 1999
  • The Nelder-Mead simplex algorithm has become on of the most widely used methods for nonlinear unconstrained optimization, since 1965. Recently, this algorithm has been reevaluated and many papers on this algorithm are being published. The MATLAB computer software, highly renown in engineering, also provides the Nelder-Mead algorithm and the Denis-Woods modification with FMINS function. The authors made C++ code of these algorithms and compared with FMINS on the convergence behavior and the exactness of solutions. It shows that MATLAB's FMINS is inferior to author's C++ code. So, FMINS should be corrected for every user.

  • PDF