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Abstract

Recently the blockchain technology has been actively studied due to its great potentiality. The smart 

contract is a key mechanism of the blockchain system. Due to the short history of the smart contract, many 

issues have not been solved yet. One main issue is vulnerability and another main issue is cost optimization. 

While the vulnerability of smart contract has been actively studied, the cost optimization has been rarely 

studied. In this paper, we propose two cost optimization methods for smart contracts running on the blockchain 

system. Triggering a function in a smart contract program code may require costs and it is repeated 

continuously. So the minimization of costs required to trigger a function of smart contract while maintaining 

the performance equally is very important. The proposed two methods minimize the usage of expensive 

permanent variables deployed on the blockchain system. We apply the proposed two methods to three prevalent 

blockchain platforms: Ethereum, Klaytn and Tron. Evaluation experiments verify that the proposed scheme 

significantly reduces the costs of functions in the smart contract written with Solidity.
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1. Introduction

The blockchain is a digital ledger system duplicated and distributed across the network of computer systems. 

The Bitcoin cryptocurrency is the first generation blockchain system that maintains a record of transactions 

across several computers linked in a peer-to-peer network [1]. The Ethereum is the second generation 

blockchain system that maintains a record of digital contracts as well as cryptocurrency transactions in a peer-

to-peer network [2]. This digital contract is made by programming codes and referred to as smart contracts.

Because of great commercial potentiality of smart contracts, other many blockchain systems with their own 

designs for the smart contract have been launched: Klaytn, Tron, EOS, Qtum, Cosmos, Cardano, ICON, etc.

Because blockchain systems require voluntary participations of several separate computers, they provide 

some cryptocurrency as the benefit to join in their blockchain systems. If the computing resources handling a 

transaction is larger, the charged cryptocurrency becomes severer. So the minimization of computing resources 

leads to cost optimization of transactions in the blockchain system. The most expensive resource in the smart 
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contract is to store a record permanently because all computers in the blockchain system cooperate to make 

consensus and store the record separately in their ledger storages. 

In this paper, we propose an automatic convert scheme of the given smart contract code so as to minimize 

the usage of permanent variables. The proposed scheme consists of two methods:  replacing permanent 

variables with temporary variables if possible and skipping the storing operation of permanent variables if their 

new values are equal to their exiting values. The proposed scheme is implemented into a software tool with 

JAVA programming. This tool searches for optimizable code patterns with unnecessary usages of permanent 

variables, and converts automatically a found code pattern into a new code pattern with the minimal usages of 

permanent variables. We apply sample smart contracts written with Solidity to three prevalently used 

blockchain platforms: Ethereum, Klaytn and Tron. Experimental results shows that the proposed scheme 

reduces manifestly the costs of smart contracts by up to about 95%. 

The rest of this paper is organized as follows; Section 2 reviews the related previous studies and explains 

the system model considered in this article. Section 3 describes the proposed scheme in detail. Section 4 shows 

evaluation results and Section 5 provides concluding remarks.

2. Previous Studies and System Model

Most of previous studies [3, 4, 5, 6] for the blockchain system focused on vulnerability analysis of smart 

contracts. Some recent attacks such as DAO and Parity MultiSig Wallet and SmartMesh resulted in big money 

loss. So many commercial services, called security audit [7], that check whether there exists security problem 

in a smart contract have been launched. Besides of vulnerability analysis, another main issue of smart contracts 

is the transaction costs of smart contracts. The blockchain system requires some costs of cryptocurrency for 

transactions of smart contracts. If a smart contract requests expensive costs for its transactions due to its bad 

design, its cumulative cost loss becomes more severe as the number of called transactions grows. 

Only a few recent studies [8, 9] handled the problem to minimize the cost of smart contracts. Chen et al. [8] 

dealt with the problem of reducing the cost of smart contract on the level of bytes codes. In contrast, the 

proposed scheme detects the optimizable patterns of high-level programming languages familiar to humans, 

instead of bytes codes. Whereas users can easily understand the difference of the original codes and the 

modified optimal codes and choose better one in the proposed scheme, they can’t in the previous study [8]. 

Our previous study [9] proposed an optimization method that reduces the number of shifts of permanent array 

variables. This paper proposes two additional optimization methods that are different from and work together 

concurrently with the previous method [9]. Whereas the previous schemes [8, 9] just detect optimizable 

patterns but not convert automatically them into their optimized patterns, the proposed scheme detects and 

converts automatically the optimizable patterns into their optimized patterns.

As introduced in our previous study [9], the computing resources depends on the platform of blockchain 

systems and thus the cost of smart contract depends on the platform type of blockchain systems. In the 

Ethereum, Klaytn, Tron, Qtum, and ICON platforms, the usage of permanent variables dominates the costs of 

transaction, although the exact cost of the same transaction may vary depending on the type of blockchain 

platform. For example, in the Ethereum platform and the Klaytn platform, the cost of changing a value in 

persistent variables is 5000 gas from non-zero or 20,000 gas from zero, while the cost of arithmetic operation 

is 3 gas or 5 gas [10, 11]. In the ICON platform, the cost of changing a value in persistent variables is 320 

steps per byte, while the cost of arithmetic operation is zero [12]. 

In this study, we focus on minimizing the usage of permanent variables. Beside of the usage of permanent 

variables, deploying (or updating) operation of the smart contract requires a lot of costs. But we do not consider 
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the cost of deploying the smart contract because it is one-time cost. The proposed scheme is applicable to most 

of public blockchain platforms, but not applicable to some blochchain platform such as the public EOS 

platform [13] and private platforms (e.g., Hyperledger Fabric [14]). In the EOS platform, the cost of changing 

a value in persistent variables is negligible while the foot print size and the execution speed dominate the costs 

of a transaction.

3. Proposed Scheme

The proposed scheme employs two code optimization methods. The first optimization method is to find the 

unnecessary permanent variables in the given smart contract and replace them with temporary variables. This 

replacement reduces the cost of smart contract, because the cost of temporary variable is much cheaper than 

the cost of permanent variable. The second optimization method is to find the non-conditional modification of 

permanent variables and replace them with the conditional modification. This replacement reduces the number 

of modifying the stored values of permanent variables, because the conditional modification excludes the 

unnecessary modification caused when the values before the modification and after the modification are same.

Figure 1 shows the flow chart of the proposed scheme. The scheme first parses the program code of the 

given smart contract into word tokens. Next the scheme searches the code pattern of unnecessary permanent 

variables. If it finds the pattern, it replaces unnecessary permanent variables with temporary variables with the 

same variable name. After completing the optimization of unnecessary permanent variables, the scheme 

searches the code pattern of non-conditional modification of permanent variables. If it finds the pattern, it 

replaces the non-conditional modification pattern with the conditional modification pattern by inserting the 

condition checking code.

Figure 1. Flowchart of Proposed Scheme

Figure 2 shows the working example of the first proposed method to optimize unnecessary permanent 

variables. The given smart contract is written with solidity language the most prevalently used on the 

blockchain platforms. Figure 2(a) shows the given smart contract code before optimization, and Figure 2(b) 

shows the modified code part after optimization. The line 7 in Figure 2(a) is replaced with line 7 in Figure 2(b). 

In Figure 2(a), “rand_array” variable defined as a global variable variable at line 4 is a permanent and 
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“tmp_array” variable defined as a local variable at line 7 within the “adddTimeToRandom” function is 

permanent. While the “rand_array” variable is necessary and unreplaceable, the “tmp_array” variable is 

replaceable with temporary variable. The “storage” variable type of “tmp_array” at line 7 of Figure 2(a) is 

replaced with the “memory” variable type at line 7 of Figure 2(b), where the variable definition of “memory” 

generates a temporary variable. The variable names before the optimization and after the optimization are same 

with “tmp_array” and the function operations before the optimization and after the optimization are equal.

Figure 2. The First Optimization Method

Figure 3 shows the working example of the second proposed method to optimize non-conditional 

modification of permanent variables. Figure 3(a) shows the given smart contract code before optimization, and 

Figure 3(b) shows the modified code part after optimization. The line 8 in Figure 3(a) is replaced with line 8 

and 9 in Figure 3(b). In Figure 3(a), the array permanent variable “time_array” is always modified for each of 

10 array elements at line 8, even when their stored values are equal to 1 before modifications. On the contrary, 

at line 8 and 9 in Figure 3(b), the array variable “time_array” is modified only when there stored values are 

different before and after modification. If the stored values of “time_array” are equal to 1 before modification, 

any array element is modified not at all. The function operations before the optimization and after the 

optimization are equal. Compared with the code size before optimization, the code size after optimization is 

increased by one. But its burden is negligible.
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Figure 3. The Second Optimization Method

4. Evaluation

For evaluation of the proposed scheme, we implement the proposed scheme into a software tool with JAVA 

programming on Ecliple IDE Jee Neon. The implemented tool converts automatically the given smart contract 

code into an optimized smart contract code. We apply the two sample codes of Figure 2(a) and Figure 3(a) to 

the implemented tool and compare the cost of triggering the functions. For an evaluation metric, we adopt 

“Cost Reduction Ratio” which is defined as “(cost of original code – cost of optimized code)/(cost of original 

code) ´ 100”. We run 100 times and display their average value.

Figure 4. Implemented Tool

Figure 4 shows a running result of the implemented software tool. The left side of Figure 4 shows the given 
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original smart contract before optimization, and the right side shows the modified smart contract after 

optimization. This tool searches for optimizable code parts marked with blue color in the left side and 

automatically converts them into optimized codes marked with red color in the right side. If users prefer to the 

optimized smart contract rather than the original smart contract, they can save the optimized smart contract by 

clicking the “Export” button on the bottom.

Table 1. Cost Reduction Ratio of the First Proposed Method

Value of array_length Ethereum Platform Klaytn Platform Tron Platform

10 65.0% 64.9% 92.2%

20 66.7% 74.9% 92.8%

40 70.9% 77.4% 93.2%

80 73.9% 83.9% 93.3%

160 74.3% 87.7% 93.4%

Table 1 shows the performance of the first optimization method (called Replacement of Unnecessary 

Permanent Variables). We examine the performance against various lengths of unnecessary permanent 

variable because the performance depends on the length of unnecessary permanent variables. We also examine 

the performance on three different blockchain platforms: Ethereum, Klaytn and Tron. In Table 1, we confirm 

that the proposed scheme reduces slightly more costs as the value of “array_length” in the code of Figure 2(a) 

increases. According to the used blockchain platforms, the cost reduction amounts and ratios are different 

because the blockchain platforms have different cost policies.

Table 2. Cost Reduction Ratio of the Second Proposed Method

Value of array_length Ethereum Platform Klaytn Platform Tron Platform

10 71.0% 81.8% 94.0%

20 77.1% 88.2% 94.4%

40 80.6% 91.7% 94.6%

80 82.5% 93.6% 94.7%

160 83.9% 94.6% 94.8%

Table 2 shows the performance of the second optimization method (called Non-conditional Modification 

Checking of Permanent Variables). Similarly to the experiment of Table 1, we examine the performance 

against various numbers of non-conditional modifications on the three different blockchain platforms. In this 

experiment, we set 50% of the original values in “time_array” array variables to be different from the modified 

values (50% of the original values are set to 1 and the rest 50% are set to 0). In Table 2, we confirm that the 

proposed scheme reduces slightly more costs as the number of “array_length” in the code of Figure 3(a) 

increases. According to the used blockchain platforms, the cost reduction amounts and ratios are different 

because the blockchain platforms have different cost policies.

5. Conclusions

In this paper, we propose two optimization methods to reduce the cost of triggering the function of smart 
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contracts. The proposed two methods minimizes the usage of expensive permanent variables from the given 

smart contract. The first proposed method is to replace unnecessary permanent variables with temporary 

variables. The second proposed method is to skip the modification of permanent variables if their original 

stored values are equal to their modified values. We implement the proposed scheme into a software tool and 

apply sample smart contracts to the implemented tool. Through practical experiments on three prevalent 

blockchain platforms, we confirm that the proposed two optimization methods can reduce significantly the 

cost of triggering the function of smart contracts by up to about 95%. 

In future study, we will investigate more optimizable code patterns besides the proposed two patterns. We 

also investigate optimizable code patterns for other languages besides of solidity.
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