• Title/Summary/Keyword: Computed Tomography (CT) Image

Search Result 661, Processing Time 0.025 seconds

Change of PET Image According to CT Exposure Conditions (CT 촬영 조건에 따른 PET 영상의 변화)

  • Park, Jae-Yoon;Kim, Jung-hoon;Lee, Yong-Ki
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.3
    • /
    • pp.473-479
    • /
    • 2019
  • PET-CT improves performance and reduces the time by combining PET and CT of spatial resolution, and uses CT scan for attenuation correction. This study analyzed PET image evaluation. The condition of the tube voltage and current of CT will be changed using. Uniformity phantom and resolution phantom were injected with 37 MBq $^{18}F$ (fluorine ; 511 keV, half life - 109.7 min), respectively. PET-CT (Biograph, siemens, US) was used to perform emission scan (30 min) and penetration scan. And then the collected image data were reconstructed in OSEM-3D. The same ROI was set on the image data with a analyzer (Vinci 2.54, Germany) and profile was used to analyze and compare spatial resolution and image quality through FWHM and SI. Analyzing profile with pre-defined ROI in each phantom, PET image was not influenced by the change of tube voltage or exposure dose. However, CT image was influenced by tube voltage, but not by exposure dose. When tube voltage was fixed and exposure dose changed, exposure dose changed too, increasing dose value. When exposure dose was fixed at 150 mA and tube voltage was varied, the result was 10.56, 24.6 and 35.61 mGy in each variables (in resolution phantom). In this study, attenuation image showed no significant difference when exposure dose was changed. However, when exposure dose increased, the amount of dose that patient absorbed increased too, which indicates that CT exposure dose should be decreased to minimum to lower the exposure dose that patient absorbs. Therefore future study needs to discuss the conditions that could minimize exposure dose that gets absorbed by patient during PET-CT scan.

Comparison of CT numbers between cone-beam CT and multi-detector CT (Cone-beam CT와 multi-detector CT영상에서 측정된 CT number에 대한 비교연구)

  • Kim, Dong-Soo;Han, Won-Jeong;Kim, Eun-Kyung
    • Imaging Science in Dentistry
    • /
    • v.40 no.2
    • /
    • pp.63-68
    • /
    • 2010
  • Purpose : To compare the CT numbers on 3 cone-beam CT (CBCT) images with those on multi-detector CT (MDCT) image using CT phantom and to develop linear regressive equations using CT numbers to material density for all the CT scanner each. Materials and Methods : Mini CT phantom comprised of five 1 inch thick cylindrical models with 1.125 inches diameter of materials with different densities (polyethylene, polystyrene, plastic water, nylon and acrylic) was used. It was scanned in 3 CBCTs (i-CAT, Alphard VEGA, Implagraphy SC) and 1 MDCT (Somatom Emotion). The images were saved as DICOM format and CT numbers were measured using OnDemand 3D. CT numbers obtained from CBCTs and MDCT images were compared and linear regression analysis was performed for the density, $\rho$ ($g/cm^3$), as the dependent variable in terms of the CT numbers obtained from CBCTs and MDCT images. Results : CT numbers on i-CAT and Implagraphy CBCT images were smaller than those on Somatom Emotion MDCT image (p<0.05). Linear relationship on a range of materials used for this study were $\rho$=0.001H+1.07 with $R^2$ value of 0.999 for Somatom Emotion, $\rho$=0.002H+1.09 with $R^2$ value of 0.991 for Alphard VEGA, $\rho$=0.001H+1.43 with $R^2$ value of 0.980 for i-CAT and $\rho$=0.001H+1.30 with $R^2$ value of 0.975 for Implagraphy. Conclusion: CT numbers on i-CAT and Implagraphy CBCT images were not same as those on Somatom Emotion MDCT image. The linear regressive equations to determine the density from the CT numbers with very high correlation coefficient were obtained on three CBCT and MDCT scan.

개인용 컴퓨터를 이용한 뇌 합성영상에 대한 재구성

  • Min, Hyeong-Gi;Nam, Sang-Hui
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.3 no.1
    • /
    • pp.110-118
    • /
    • 1997
  • Recently, to make a diagnosis of the patient different X-Ray examinations are used. To name a few, Computed Tomography(CT). Magnetic Resonance Image(MRI) Single Photon Emission Computed Tomography(SPET) and Positron Emission Tomography(PET). But diagnosticians face difficulties sometimes when they make a diagnosis with images from those examinations. One of the problem is whether the Lesions of the patient is captured in the image correctly. Another one is whether the images are taken with same angle. in this paper, a study 9 on the method to obtain the hybrid image from the different images to different examinations. The procedure done in this paper is described as future study. Although small errors in position between images would occurred, this method more useful as it does not make patients in convenient. To reconstruct a image, some images are scanned by scanner and stored to personal computer for further image processing with Aldus photostyler program. The method to generate a sharpened image are also described.

  • PDF

Comparison of Volumes between Four-Dimensional Computed Tomography and Cone-Beam Computed Tomography Images using Dynamic Phantom (호흡동조전산화단층촬영과 콘빔전산화단층촬영의 팬텀 영상 체적비교)

  • Kim, Seong-Eun;Won, Hui-Su;Hong, Joo-Wan;Chang, Nam-Jun;Jung, Woo-Hyun;Choi, Byeong-Don
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.28 no.2
    • /
    • pp.123-130
    • /
    • 2016
  • Purpose : The aim of this study was to compare the differences between the volumes acquired with four-dimensional computed tomography (4DCT)images with a reconstruction image-filtering algorithm and cone-beam computed tomography (CBCT) images with dynamic phantom. Materials and Methods : The 4DCT images were obtained from the computerized imaging reference systems (CIRS) phantom using a computed tomography (CT) simulator. We analyzed the volumes for maximum intensity projection (MIP), minimum intensity projection (MinIP) and average intensity projection (AVG) of the images obtained with the 4DCT scanner against those acquired from CBCT images with CT ranger tools. Results : Difference in volume for node of 1, 2 and 3 cm between CBCT and 4DCT was 0.54~2.33, 5.16~8.06, 9.03~20.11 ml in MIP, respectively, 0.00~1.48, 0.00~8.47, 1.42~24.85 ml in MinIP, respectively and 0.00~1.17, 0.00~2.19, 0.04~3.35 ml in AVG, respectively. Conclusion : After a comparative analysis of the volumes for each nodal size, it was apparent that the CBCT images were similar to the AVG images acquired using 4DCT.

  • PDF

Evaluation and Comparison of Contrast to Noise Ratio and Signal to Noise Ratio According to Change of Reconstruction on Breast PET/CT (Breast PET CT 영상 재구성 변화에 따른 대조도 대 잡음비와 신호 대 잡음비의 비교평가)

  • Lee, Jea-Young;Lee, Eul-Kyu;Kim, Ki-Won;Jeong, Hoi-Woun;Lyu, Kwang-Yeul;Park, Hoon-Hee;Son, Jin-Hyun;Min, Jung-Whan
    • Journal of radiological science and technology
    • /
    • v.40 no.1
    • /
    • pp.79-85
    • /
    • 2017
  • The purpose of this study was to measure contrast to noise ratio (CNR) and signal to noise ratio (SNR) according to change of reconstruction from region of interest (ROI) in breast positron emission tomography-computed tomography (PET-CT), and to analyze the CNR and SNR statically. We examined images of breast PET-CT of 100 patients in a University-affiliated hospital, Seoul, Korea. Each patient's image of breast PET-CT were calculated by using ImageJ. Differences of CNR and SNR among four reconstruction algorithms were tested by SPSS Statistics21 ANOVA test for there was statistical significance (p<0.05). We have analysis socio-demographical variables, CNR and SNR according to reconstruction images, 95% confidence according to CNR and SNR of reconstruction and difference in a mean of CNR and SNR. SNR results, with the quality of distributions in the order of PSF_TOF, Iterative and Iterative-TOF, FBP-TOF. CNR, with the quality of distributions in the order of PSF_TOF, Iterative and Iterative-TOF, FBP-TOF. CNR and SNR of PET-CT reconstruction methods of the breast would be useful to evaluate breast diseases.

Evaluation of Noise Level and Blind Quality in CT Images using Advanced Modeled Iterative Reconstruction (ADMIRE) (고급 모델 반복 재구성법 (ADMIRE)을 사용한 CT 영상에서의 노이즈 레벨 및 블라인드 화질 평가)

  • Shim, Jina;Kang, Seong-Hyeon;Lee, Youngjin
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.3
    • /
    • pp.203-209
    • /
    • 2022
  • One of the typical methods for lowering radiation dose while maintaining image quality of computed tomography (CT) is the use of model-based iterative reconstruction (MBIR). This study is to evaluate the image quality by adjusting the strength of the advanced modeled iterative reconstruction (ADMIRE), which is well known as a representative model of MBIR. The study was conducted using phantom, and CT images were obtained while adjusting the strength of ADMIRE in units of 1 to 5. Quantitative evaluation includes noise levels using coefficient of variation (COV) and contrast to noise ratio (CNR), as well as natural image quality evaluation (NIQE) and blind/referenceless image spatial quality evaluator (BRISQUE). As a result, in both noise level and blind quality evaluation results, the higher the strength of ADMIRE, the better the results were derived. In particular, it was confirmed that COV and CNR were improved 1.89 and 1.75 times at ADMIRE 5 compared to ADMIRE 1, respectively, and NIQE and BRISQUE were proved to be improved 1.35 and 1.22 times at ADMIRE 5 compared to ADMIRE 1, respectively. In conclusion, this study was proved that the reconstruction strength of ADMIRE had a great influence on the noise level and overall image quality evaluation of CT images.

Image Segmentation of Lung Parenchyma using Improved Deformable Model on Chest Computed Tomography (개선된 가변형 능동모델을 이용한 흉부 컴퓨터단층영상에서 폐 실질의 분할)

  • Kim, Chang-Soo;Choi, Seok-Yoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.10
    • /
    • pp.2163-2170
    • /
    • 2009
  • We present an automated, energy minimized-based method for Lung parenchyma segmenting Chest Computed Tomography(CT) datasets. Deformable model is used for energy minimized segmentation. Quantitative knowledge including expected volume, shape of Chest CT provides more feature constrain to diagnosis or surgery operation planning. Segmentation subdivides an lung image into its consistent regions or objects. Depends on energy-minimizing, the level detail image of subdivision is carried. Segmentation should stop when the objects or region of interest in an application have been detected. The deformable model that has attracted the most attention to date is popularly known as snakes. Snakes or deformable contour models represent a special case of the general multidimensional deformable model theory. This is used extensively in computer vision and image processing applications, particularly to locate object boundaries, in the mean time a new type of external force for deformable models, called gradient vector flow(GVF) was introduced by Xu. Our proposed algorithm of deformable model is new external energy of GVF for exact segmentation. In this paper, Clinical material for experiments shows better results of proposal algorithm in Lung parenchyma segmentation on Chest CT.

Diagnosis and Visualization of Intracranial Hemorrhage on Computed Tomography Images Using EfficientNet-based Model (전산화 단층 촬영(Computed tomography, CT) 이미지에 대한 EfficientNet 기반 두개내출혈 진단 및 가시화 모델 개발)

  • Youn, Yebin;Kim, Mingeon;Kim, Jiho;Kang, Bongkeun;Kim, Ghootae
    • Journal of Biomedical Engineering Research
    • /
    • v.42 no.4
    • /
    • pp.150-158
    • /
    • 2021
  • Intracranial hemorrhage (ICH) refers to acute bleeding inside the intracranial vault. Not only does this devastating disease record a very high mortality rate, but it can also cause serious chronic impairment of sensory, motor, and cognitive functions. Therefore, a prompt and professional diagnosis of the disease is highly critical. Noninvasive brain imaging data are essential for clinicians to efficiently diagnose the locus of brain lesion, volume of bleeding, and subsequent cortical damage, and to take clinical interventions. In particular, computed tomography (CT) images are used most often for the diagnosis of ICH. In order to diagnose ICH through CT images, not only medical specialists with a sufficient number of diagnosis experiences are required, but even when this condition is met, there are many cases where bleeding cannot be successfully detected due to factors such as low signal ratio and artifacts of the image itself. In addition, discrepancies between interpretations or even misinterpretations might exist causing critical clinical consequences. To resolve these clinical problems, we developed a diagnostic model predicting intracranial bleeding and its subtypes (intraparenchymal, intraventricular, subarachnoid, subdural, and epidural) by applying deep learning algorithms to CT images. We also constructed a visualization tool highlighting important regions in a CT image for predicting ICH. Specifically, 1) 27,758 CT brain images from RSNA were pre-processed to minimize the computational load. 2) Three different CNN-based models (ResNet, EfficientNet-B2, and EfficientNet-B7) were trained based on a training image data set. 3) Diagnosis performance of each of the three models was evaluated based on an independent test image data set: As a result of the model comparison, EfficientNet-B7's performance (classification accuracy = 91%) was a way greater than the other models. 4) Finally, based on the result of EfficientNet-B7, we visualized the lesions of internal bleeding using the Grad-CAM. Our research suggests that artificial intelligence-based diagnostic systems can help diagnose and treat brain diseases resolving various problems in clinical situations.

A Study on Radiation Dose and Image Quality according to CT Table Height in Brain CT (두부 CT 검사 시 테이블 높이에 따른 선량과 화질에 관한 연구)

  • Ki-Won Kim;Joo-Young Oh;Jung-Whan Min;Sang-Sun Lee;Young-Bong Lee;Kyung-Hwan Lim;Yun Yi
    • Journal of radiological science and technology
    • /
    • v.46 no.2
    • /
    • pp.99-106
    • /
    • 2023
  • The height of the table should be considered important during computed tomography (CT) examination, but according to previous studies, not all radiology technologists set the table at the patient's center at the examination, which affects the exposure dose and image quality received by the patient. Therefore, this study intends to study the image quality exposure dose according to the height of the table to realize the optimal image quality and dose during the brain CT scan. The head phantom images were acquired using Philips Brilliance iCT 256. When the image was acquired, the table height was adjusted to 815, 865, 915, 965, 1015, and 1030 mm, respectively, and each scan was performed 3 times for each height. For the exposure dose measurement, optically stimulated luminescence dosimeter (OSLD) was attached to the front, side, eye, and thyroid gland of the head phantom. In the signal to noise ratio (SNR) measurement result, The SNR values for each table height were all lower than 915 mm. As a result of exposure dose, the exposure dose on each area increased as the table height decreased. The height of the table has a close relationship with the patient's radiation exposure dose in the CT scan.

Feasibility of Improving the Accuracy of Dose Calculation Using Hybrid Computed Tomography Images: A Phantom Study

  • Jeon, Hosang;Kim, Dong Woon;Joo, Ji Hyeon;Ki, Yongkan;Kim, Wontaek;Park, Dahl;Nam, Jiho;Kim, Dong Hyeon
    • Progress in Medical Physics
    • /
    • v.32 no.1
    • /
    • pp.18-24
    • /
    • 2021
  • Purpose: Kilovoltage computed tomography (kV-CT) is essential for radiation treatment planning. However, kV-CT images are significantly distorted by artifacts when a metallic prosthesis is present in the patient's body. Thus, the accuracies of target delineation and treatment dose calculation are inevitably lowered. We evaluated the accuracy of the calculated doses using an image restoration method with hybrid CT, which was introduced in our previous study. Methods: A cylindrical phantom containing four metals, namely, silver, copper, tin, and tungsten, was scanned using kV-CT and megavoltage CT to produce hybrid CT images. We created six verification plans for three head and neck patients on kV-CT and hybrid CT images of the phantom and calculated their doses. The actual doses were measured with film patches during beam delivery using tomotherapy. We used the gamma evaluation method to compare dose distribution between kV-CT and hybrid CT with three gamma criteria, namely, 3%/3 mm, 2%/2 mm, and 1%/1 mm. Results: The gamma pass rates decreased as the gamma criteria were strengthened, and the pass rate of hybrid CT was higher than that of kV-CT in all cases. When the 1%/1 mm criterion was used, the difference in gamma pass rates between them was up to 13%p. Conclusions: According to our findings, we expect that the use of hybrid CT can be a suitable approach to avoid the effect of severe metal artifacts on the accuracy of dose calculation and contouring.