• Title/Summary/Keyword: Computed Tomography (CT) Image

Search Result 655, Processing Time 0.028 seconds

Development of a Malignancy Potential Binary Prediction Model Based on Deep Learning for the Mitotic Count of Local Primary Gastrointestinal Stromal Tumors

  • Jiejin Yang;Zeyang Chen;Weipeng Liu;Xiangpeng Wang;Shuai Ma;Feifei Jin;Xiaoying Wang
    • Korean Journal of Radiology
    • /
    • v.22 no.3
    • /
    • pp.344-353
    • /
    • 2021
  • Objective: The mitotic count of gastrointestinal stromal tumors (GIST) is closely associated with the risk of planting and metastasis. The purpose of this study was to develop a predictive model for the mitotic index of local primary GIST, based on deep learning algorithm. Materials and Methods: Abdominal contrast-enhanced CT images of 148 pathologically confirmed GIST cases were retrospectively collected for the development of a deep learning classification algorithm. The areas of GIST masses on the CT images were retrospectively labelled by an experienced radiologist. The postoperative pathological mitotic count was considered as the gold standard (high mitotic count, > 5/50 high-power fields [HPFs]; low mitotic count, ≤ 5/50 HPFs). A binary classification model was trained on the basis of the VGG16 convolutional neural network, using the CT images with the training set (n = 108), validation set (n = 20), and the test set (n = 20). The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated at both, the image level and the patient level. The receiver operating characteristic curves were generated on the basis of the model prediction results and the area under curves (AUCs) were calculated. The risk categories of the tumors were predicted according to the Armed Forces Institute of Pathology criteria. Results: At the image level, the classification prediction results of the mitotic counts in the test cohort were as follows: sensitivity 85.7% (95% confidence interval [CI]: 0.834-0.877), specificity 67.5% (95% CI: 0.636-0.712), PPV 82.1% (95% CI: 0.797-0.843), NPV 73.0% (95% CI: 0.691-0.766), and AUC 0.771 (95% CI: 0.750-0.791). At the patient level, the classification prediction results in the test cohort were as follows: sensitivity 90.0% (95% CI: 0.541-0.995), specificity 70.0% (95% CI: 0.354-0.919), PPV 75.0% (95% CI: 0.428-0.933), NPV 87.5% (95% CI: 0.467-0.993), and AUC 0.800 (95% CI: 0.563-0.943). Conclusion: We developed and preliminarily verified the GIST mitotic count binary prediction model, based on the VGG convolutional neural network. The model displayed a good predictive performance.

Whether Pinhole Scan or Single Photon Emission Computed Tomography (SPECT) in the Diagnosis of Bone and Joint Diseases (골격계진단에 있어서 핀홀스캔의 우월성)

  • Bahk, Yong-Whee
    • The Korean Journal of Nuclear Medicine
    • /
    • v.30 no.1
    • /
    • pp.1-14
    • /
    • 1996
  • Since the publication of the first bone scintiscans in 1962 three decades have elapsed. The bone scan has made great strides during this period, becoming one of the most commonly used nuclear imaging tests. In spite of the progress, however, the specificity of bone scan has remained relatively low. As the result it is a common practice to seek additional information from radiograph, CT scan and MR image, which is euphemistically termed as "image fusion or co-location." The basic reason is the inapplicability of the classical piecemeal analysis to interpreting planar and SPECT bone scans. Such analysis has its base on the observation of elemental features of morphology, which include the size, shape, contour, location, topography and internal architecture. The physiochemical profile may well also be included. Understandably, however, the miniatured images of the planar bone scan cannot provide these features in acceptable detail and the same holds true even with SPECT Images which are but sliced views of the reconstructed planar scans. Fortunately pinhole scanning has the capacity to portray both the morphological and chemical profiles of bone and joint diseases in greater detail through true magnification. The magnitude of pinhole scan resolution is practically comparable to that of radiography as far as gross anatomy is concerned. Thus, we feel strongly that pinhole scanning is a potential breakthrough of the long-lamented low specificity of bone scan. This presentation will discuss the fun-damentals, advantages and disadvantages and the most recent advances of pinhole scanning. It high-lights the actual clinical applications of pinhole scanning in relation to the diagnosis of infective and inflammatory diseases of bone and joint.

  • PDF

Shoulder Arthrokinematics of Collegiate Ice Hockey Athletes Based on the 3D-2D Model Registration Technique

  • Jeong, Hee Seong;Song, Junbom;Lee, Inje;Kim, Doosup;Lee, Sae Yong
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.3
    • /
    • pp.155-161
    • /
    • 2021
  • Objective: There is a lack of studies using the 3D-2D image registration techniques on the mechanism of a shoulder injury for ice hockey players. This study aimed to analyze in vivo 3D glenohumeral joint arthrokinematics in collegiate ice hockey athletes and compare shoulder scaption with or without a hockey stick using the 3D-2D image registration technique. Method: We recruited 12 male elite ice hockey players (age, 19.88 ± 0.65 years). For arthrokinematic analysis of the common shoulder abduction movements of the injury pathogenesis of ice hockey players, participants abducted their dominant arm along the scapular plane and then grabbed a stick using the same motion under C-arm fluoroscopy with 16 frames per second. Computed tomography (CT) scans of the shoulder complex were obtained with a 0.6-mm slice pitch. Data from the humerus translation distances, scapula upward rotation, anterior-posterior tilt, internal to external rotation angles, and scapulohumeral rhythm (SHR) ratio on glenohumeral (GH) joint kinematics were outputted using a MATLAB customized code. Results: The humeral translation in the stick hand compared to the bare hand moved more anterior and more superior until the abduction angle reached 40°. When the GH joint in the stick hand was at the maximal abduction of the scapula, the scapula was externally rotated 2~5° relative to 0°. The SHR ratio relative to the abduction along the scapular plane at 40° indicated a statistically significant difference between the two groups (p < 0.05). Conclusion: With arm loading with the stick, the humeral and scapular kinematics showed a significant correlation in the initial section of the SHR. Although these correlations might be difficult in clinical settings, ice hockey athletes can lead to the movement difference of the scapulohumeral joints with inherent instability.

Quantitative Evaluation of the Accuracy of 3D Imaging with Multi-Detector Computed Tomography Using Human Skull Phantom (두개골 팬텀을 이용한 다검출기 CT 3차원 영상에서의 거리측정을 통한 정량적 영상특성 평가)

  • 김동욱;정해조;김새롬;유영일;김기덕;김희중
    • Progress in Medical Physics
    • /
    • v.14 no.2
    • /
    • pp.131-140
    • /
    • 2003
  • As the importance of accuracy in measurings of 3-D anatomical structures continues to be stressed, an objective and quantitative of assessing image quality and accuracy of 3-D volume-rendered images is required. The purpose of this study was to evaluate the quantitative accuracy of 3-D rendered images obtained with MDCT, scanned at various scanning parameters (scan modes, slice thicknesses and reconstruction slice thickness). Twelve clinically significant points that play an important role for the craniofacial bone in plastic surgery and dentistry were marked on the surface of a dry human skull. The direct distances between the reference points were defined as gold standards to assess the measuring errors of 3-D images. Then, we scanned the specimen with acquisition parameters of 300 mA, In kVp, and 1.0 sec scan time in axial and helical scan modes (pitch 3:1 and 6:1) at 1,25 mm, 2.50 mm, 3.75 mm and 5.00 mm slice thicknesses. We performed 3-D visualizations and distance measurements with volumetric analysis software and statistically evaluated the quantitative accuracy of distance measurements. The accuracy of distance measurements on the 3-D images acquired with 1.25, 2.50, 3,75 and 5.00 mm slice thickness were 48%, 33%, 23%, 14%, respectively, and those of the reconstructed 1.25 mm were 53%, 41%, 43%, 36% respectively. Meanwhile, there were insignificant statistical differences (P-value<0.05) in the accuracy of the distance measurements of 3-D images reconstructed with 1.25 mm thickness. In conclusion, slice thickness, rather than scan mode, influenced the quantitative accuracy of distance measurements in 3-D rendered images with MDCT. The quantitative analysis of distance measurements may be a useful tool for evaluating the accuracy of 3-D rendered images used in diagnosis, surgical planning, and radiotherapeutic treatment.

  • PDF

Study on Volume Measurement of Cerebral Infarct using SVD and the Bayesian Algorithm (SVD와 Bayesian 알고리즘을 이용한 뇌경색 부피 측정에 관한 연구)

  • Kim, Do-Hun;Lee, Hyo-Young
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.5
    • /
    • pp.591-602
    • /
    • 2021
  • Acute ischemic stroke(AIS) should be diagnosed within a few hours of onset of cerebral infarction symptoms using diagnostic radiology. In this study, we evaluated the clinical usefulness of SVD and the Bayesian algorithm to measure the volume of cerebral infarction using computed tomography perfusion(CTP) imaging and magnetic resonance diffusion-weighted imaging(MR DWI). We retrospectively included 50 patients (male : female = 33 : 17) who visited the emergency department with symptoms of AIS from September 2017 to September 2020. The cerebral infarct volume measured by SVD and the Bayesian algorithm was analyzed using the Wilcoxon signed rank test and expressed as a median value and an interquartile range of 25 - 75 %. The core volume measured by SVD and the Bayesian algorithm using was CTP imaging was 18.07 (7.76 - 33.98) cc and 47.3 (23.76 - 79.11) cc, respectively, while the penumbra volume was 140.24 (117.8 - 176.89) cc and 105.05 (72.52 - 141.98) cc, respectively. The mismatch ratio was 7.56 % (4.36 - 15.26 %) and 2.08 % (1.68 - 2.77 %) for SVD and the Bayesian algorithm, respectively, and all the measured values had statistically significant differences (p < 0.05). Spearman's correlation analysis showed that the correlation coefficient of the cerebral infarct volume measured by the Bayesian algorithm using CTP imaging and MR DWI was higher than that of the cerebral infarct volume measured by SVD using CTP imaging and MR DWI (r = 0.915 vs. r = 0.763 ; p < 0.01). Furthermore, the results of the Bland Altman plot analysis demonstrated that the slope of the scatter plot of the cerebral infarct volume measured by the Bayesian algorithm using CTP imaging and MR DWI was more steady than that of the cerebral infarct volume measured by SVD using CTP imaging and MR DWI (y = -0.065 vs. y = -0.749), indicating that the Bayesian algorithm was more reliable than SVD. In conclusion, the Bayesian algorithm is more accurate than SVD in measuring cerebral infarct volume. Therefore, it can be useful in clinical utility.

A Study on Mechanical Errors in Cone Beam Computed Tomography(CBCT) System (콘빔 전산화단층촬영(CBCT) 시스템에서 기계적 오류에 관한 연구)

  • Lee, Yi-Seong;Yoo, Eun-Jeong;Kim, Seung-Keun;Choi, Kyoung-Sik;Lee, Jeong-Woo;Suh, Tae-Suk;Kim, Joeng-Koo
    • Journal of radiological science and technology
    • /
    • v.36 no.2
    • /
    • pp.123-129
    • /
    • 2013
  • This study investigated the rate of setup variance by the rotating unbalance of gantry in image-guided radiation therapy. The equipments used linear accelerator(Elekta Synergy TM, UK) and a three-dimensional volume imaging mode(3D Volume View) in cone beam computed tomography(CBCT) system. 2D images obtained by rotating $360^{\circ}$and $180^{\circ}$ were reconstructed to 3D image. Catpan503 phantom and homogeneous phantom were used to measure the setup errors. Ball-bearing phantom was used to check the rotation axis of the CBCT. The volume image from CBCT using Catphan503 phantom and homogeneous phantom were analyzed and compared to images from conventional CT in the six dimensional view(X, Y, Z, Roll, Pitch, and Yaw). The variance ratio of setup error were difference in X 0.6 mm, Y 0.5 mm Z 0.5 mm when the gantry rotated $360^{\circ}$ in orthogonal coordinate. whereas rotated $180^{\circ}$, the error measured 0.9 mm, 0.2 mm, 0.3 mm in X, Y, Z respectively. In the rotating coordinates, the more increased the rotating unbalance, the more raised average ratio of setup errors. The resolution of CBCT images showed 2 level of difference in the table recommended. CBCT had a good agreement compared to each recommended values which is the mechanical safety, geometry accuracy and image quality. The rotating unbalance of gentry vary hardly in orthogonal coordinate. However, in rotating coordinate of gantry exceeded the ${\pm}1^{\circ}$ of recommended value. Therefore, when we do sophisticated radiation therapy six dimensional correction is needed.

CLINICAL STUDY OF POSITRON EMISSION TOMOGRAPHY WITH $[^{18}F]$-FLUORODEOXYGLUCOSE IN MAXILLOFACIAL TUMOR DIAGNOSIS (구강 악안면 영역의 암종 진단에 있어서 $[^{18}F]$-Fluorodeoxyglucose를 이용한 양전자방출 단층촬영의 임상적 연구)

  • Kim, Jae-Hwan;Kim, Kyung-Wook;Kim, Yong-Kack
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.26 no.5
    • /
    • pp.462-469
    • /
    • 2000
  • Positron Emission Tomography(PET) is a new diagnostic method that can create functional images of the distribution of positron emitting radionuclides, which when administered intravenously in the body, makes possible anatomical and functional analysis by quantity of biochemical and physiological process. After genetic and biochemical changes in initial stage, malignant tumor undergoes functional changes before undergoing anatomical changes. So, early diagnosis of malignant tumors by functional analysis with PET can be achieved, replacing traditional anatomical analysis, such as computed tomography(CT) and magnetic resonance image(MRI), etc. Similarly, PET can identify malignant tumor without confusion with scar and fibrosis in follow up check. In the Korea Cancer Center Hospital(KCCH) from October 1997 to September 1999, clinical study was performed in 79 cases that underwent 89 times PET evaluation with [18F]-Fluorodeoxyglucose for diagnosis of oral and maxillofacial tumors, and the data was analysed by Bayesian $2{\times}2$ Classification Table. The results were as follows : Evaluation for initial diagnosis with FDG-PET (P<0.005) 1. Agreement rate or accuracy rate is 88.9%. 2. Sensitivity is 95.2%, and specificity 66.7%. 3. Positive predictive rate is 90.9%, and negative predictive rate 80.0%. 4. In consideration of tumor stage, diagnostic rate in less than stage II was 90% and in greater than stage III 100%. 5. In consideration of tumor size, diagnostic rate in less than T2 was 92.3% and in greater than T3 100%. After primary treatment, evaluation for follow up check with FDG-PET (P < 0.001) 1. Agreement rate or accuracy rate is 85.4%. 2. Sensitivity is 87.5%, and specificity 82.4%. 3. Positive predictive rate is 87.5%, and negative predictive rate 82.4%. 4. In 24 recurred cases, 6 had distant metastasis, and 5 of them were diagnosed with FDG-PET, resulting in diagnostic rate of FDG-PET of 83.3%. From the above results, Positron Emission Tomography with [18F]- Fluorodeoxyglucose appears to be more sensitive and accurate for detecting the presence of oral and maxillofacial tumors, and has various clinical applications such as early diagnosis of tumor in initial and follow up check and detection of distant metastasis.

  • PDF

Ex vivo High-resolution Optical Coherence Tomography (OCT) Imaging of Pleural Reaction after Pleurodesis Using Talc

  • Ahn, Yeh-Chan;Oak, Chulho;Park, Jung-Eun;Jung, Min-Jung;Kim, Jae-Hun;Lee, Hae-Young;Kim, Sung Won;Park, Eun-Kee;Jung, Maan Hong
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.607-613
    • /
    • 2016
  • The pleura is known as an end target organ of exposure to toxic environmental materials such as fine particulate matter and asbestos. Moreover, long-term exposure to hazardous materials can eventually lead to fatal lung disease such as diffuse pleural fibrosis or mesothelioma. Chest computed tomography (CT) and ultrasound are gold standard imaging modalities for detection of advanced pleural disease. However, a diagnostic tool for early detection of pleural reaction has not been developed yet due to difficulties in imaging ultra-fine structure of the pleura. Optical coherence tomography (OCT), which provides cross-sectional images of micro tissue structures at a resolution of 2-10 μm, can image the mesothelium with a thickness of ~100 μm and therefore enables investigation of the early pleural reaction. In this study, we induced the early pleural reaction according to a time sequence after pleurodesis using talc, which has been widely used in the clinical field. The pleural reaction in talc grouped according to the time sequence (1st, 2nd, 4th weeks) showed a significant thickening (average thickness: 45 ± 7.5 μm, 80 ± 10.7 μm, 90 ± 12.5 μm), while the pleural reaction in sham and normal groups showed pleural change from normal to minimal thickening (average thickness: 16 ± 5.5 μm, 17 ± 4.5 μm, 15 ± 6.5 μm, and 12 ± 7.5 μm, 13 ± 2.5 μm, 12 ± 3.5 μm). The measurement of pleural reaction by pathologic examinations was well-matched with the measurement by OCT images. This is the first study for measuring the thickness of pleural reactions using a biophotonic modality such as OCT. Our results showed that OCT can be useful for evaluating the early pleural reaction.

Three Dimensional Measurement of Ideal Trajectory of Pedicle Screws of Subaxial Cervical Spine Using the Algorithm Could Be Applied for Robotic Screw Insertion

  • Huh, Jisoon;Hyun, Jae Hwan;Park, Hyeong Geon;Kwak, Ho-Young
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.4
    • /
    • pp.376-381
    • /
    • 2019
  • Objective : To define optimal method that calculate the safe direction of cervical pedicle screw placement using computed tomography (CT) image based three dimensional (3D) cortical shell model of human cervical spine. Methods : Cortical shell model of cervical spine from C3 to C6 was made after segmentation of in vivo CT image data of 44 volunteers. Three dimensional Cartesian coordinate of all points constituting surface of whole vertebra, bilateral pedicle and posterior wall were acquired. The ideal trajectory of pedicle screw insertion was defined as viewing direction at which the inner area of pedicle become largest when we see through the biconcave tubular pedicle. The ideal trajectory of 352 pedicles (eight pedicles for each of 44 subjects) were calculated using custom made program and were changed from global coordinate to local coordinate according to the three dimensional position of posterior wall of each vertebral body. The transverse and sagittal angle of trajectory were defined as the angle between ideal trajectory line and perpendicular line of posterior wall in the horizontal and sagittal plane. The averages and standard deviations of all measurements were calculated. Results : The average transverse angles were $50.60^{\circ}{\pm}6.22^{\circ}$ at C3, $51.42^{\circ}{\pm}7.44^{\circ}$ at C4, $47.79^{\circ}{\pm}7.61^{\circ}$ at C5, and $41.24^{\circ}{\pm}7.76^{\circ}$ at C6. The transverse angle becomes more steep from C3 to C6. The mean sagittal angles were $9.72^{\circ}{\pm}6.73^{\circ}$ downward at C3, $5.09^{\circ}{\pm}6.39^{\circ}$ downward at C4, $0.08^{\circ}{\pm}6.06^{\circ}$ downward at C5, and $1.67^{\circ}{\pm}6.06^{\circ}$ upward at C6. The sagittal angle changes from caudad to cephalad from C3 to C6. Conclusion : The absolute values of transverse and sagittal angle in our study were not same but the trend of changes were similar to previous studies. Because we know 3D address of all points constituting cortical shell of cervical vertebrae. we can easily reconstruct 3D model and manage it freely using computer program. More creative measurement of morphological characteristics could be carried out than direct inspection of raw bone. Furthermore this concept of measurement could be used for the computing program of automated robotic screw insertion.

Global Cerebral Ischemia in a Beagle Dog (비글견에서 발생한 전반적 대뇌허혈)

  • Choi, Ho-Jung;Choi, Soo-Young;An, Ji-Young;O, I-Se;Jeong, Seong-Mok;Cho, Sung-Whan;Lee, Young-Won
    • Journal of Veterinary Clinics
    • /
    • v.26 no.1
    • /
    • pp.104-108
    • /
    • 2009
  • Global cerebral ischemia occurs commonly in patients who have a variety of clinical conditions including cardiac arrest and shock. Cerebral ischemia results in a rapid depletion of energy stores that triggers resulting in excitotoxic death. Imaging studies of the brain with computed tomography(CT) or magnetic resonance imaging(MRI) are necessary to confirm the clinical neurolocalization, identify any associated mass effect, and rule out other causes of focal brain disorders. Cardiopulmonary arrest was occurred by propofol anesthesia in a 1 year old, intact female Beagle dog. After successful cardiopulmonary resuscitation was performed within 5 minutes, clinical signs such as vocalization, paddling, opisthotonus and seizure were represented. At the 12th day, CT and MRI examinations of the brain were performed to evaluate the brain. After euthanasia, histopathologic examination was performed. On transverse image of CT, lesions appeared as a hypodense in the right dorsal surface of the frontal lobe and level of optic canal, and dorsomedial surface of occipital lobe of cerebrum. No contrast enhancement was represented following intravenous contrast administration. On MR images of brain, the lesions were seen as a hyperintense on T2-weighted(T2W) images and a isointense or mild hypointense on T1-weighted(T1W) images. Hyperintense lesions both T2W and T1W images were observed at the surrounding cerebral sulcus. There was no significant signal changes on contrast T1WI. Histopathologic examination after euthanasia revealed that the lesion was necrosis of the cerebral cortex caused by cerebral ischemia.