OpenGL compute shader는 다른 shader 단계와 다르게 동작하며, 병렬로 모든 데이터를 계산하는데 사용할 수 있다. 본 논문은 OpenGL compute shader에서 반복 켤레 기울기 방법을 통해 희소선형 시스템을 계산하기 위한 GPU 기반의 병렬 알고리즘 제안하였다. 제안된 희소 선형 해결 방법은 대칭인 양의 정부호 행렬과 같은 대형 선형 시스템을 해결하기 위해 사용된다. 본 논문은 이 알고리즘을 사용하여 매트릭스 형식이 다른 8가지 예제들에 대해서 CPU와 GPU를 기반으로한 성능 비교 결과를 제공한다. 본 논문은 4가지 잘 알려져 있는 매트릭스 형식(Dense, COO, ELL and CSR)을 매트릭스 저장소를 사용하였다. 8개의 희소 매트릭스를 사용한 성능 비교 실험에서 GPU 기반 선형 해결 시스템이 CPU 기반 선형 해결 시스템보다 훨씬 빠르며, GPU 기반에서 0.64ms, CPU 기반에서 15.37ms의 평균 컴퓨팅 시간을 제공한다.
실시간 물리 기반 3D 시뮬레이션에서 연산속도는 매우 중요한 요소이다. 객체의 움직임이나 변형과 같은 현상들은 복잡한 연산을 통해서 계산되기 때문에 일반적으로 시뮬레이션의 정확도와 연산속도는 반비례 관계에 있다. 현재 출시되고 있는 대부분의 게임에서는 물체의 움직임을 정확하게 표현하기보다 연산량을 줄이기 위해 물체의 움직임이나 변형을 비슷하게 표현하는데 중점을 두고 있다. 본 논문에서는 이러한 문제를 해결하기 위하여 OpenGL 4.3의 Compute shader를 사용하여 다이내믹 시뮬레이션의 연산 작업을 GPU 병렬처리로 처리하였다. Compute shader에서 파티클의 움직임을 계산하고 Shader storage buffer object에 저장하고 파티클들의 작업량을 적절한 Workgroup의 크기로 나누어 할당하여 최적의 처리속도를 제공하도록 구현하였다. Compute shader에서 파티클의 움직임을 표현하기 위해서 수치해법 중의 하나인 Euler method를 사용하였으며 실험 결과 파티클의 수가 4,194,304개일 때 CPU 방법에 비해 약 182배 빠른 연산속도 결과를 보였다. 추후 Compute shader를 활용하여 연산량이 많은 분야에 적용 가능할 수 있을 것으로 기대한다.
최근 GPGPU를 이용하여 저하된 컴퓨터 성능 향상폭을 높일 수 있게 되었고, 이로 인하여 높은 연산을 요구로 하는 물리 기반의 실시간 시뮬레이션을 PC에서 구동할 수 있게 되었다. 물리 시뮬레이션에서 적용되는 물리 계산은 병렬 처리로 수행되어질 수 있으며, 최근 OpenGL 4.3 및 Unity4.0에서 지원되는 Compute shader를 통한 병렬 연산을 이용하면 효율적으로 구동할 수 있다. 본 논문에서는 다양한 플랫폼을 지원하는 디지털 콘텐츠 제작 툴인 Unity와 다양한 플랫폼에서 구동되어지는 OpenGL에서의 실시간 물리 시뮬레이션에서의 성능을 측정 및 비교한다. 본 논문에서 particle 시뮬레이션의 실험 결과 Unity를 이용한 particle 시뮬레이션이 OpenGL을 이용한 particle 시뮬레이션에 비해 최대 136.04% 빠른 성능을 보인다. 이를 통하여 추후 멀티 플랫폼을 지원하는 디지털 콘텐츠를 제작함에 있어 더 나은 개발 도구를 선정할 수 있을 것으로 기대된다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제11권8호
/
pp.4120-4132
/
2017
In this research, we implement a deformable object simulation system using OpenGL's shader language, GLSL4.3. Deformable object simulation is implemented by using volumetric mass-spring system suitable for real-time simulation among the methods of deformable object simulation. The compute shader in GLSL 4.3 which helps to access the GPU resources, is used to parallelize the operations of existing deformable object simulation systems. The proposed system is implemented using a compute shader for parallel processing and it includes a bounding box-based collision detection solution. In general, the collision detection is one of severe computing bottlenecks in simulation of multiple deformable objects. In order to validate an efficiency of the system, we performed the experiments using the 3D volumetric objects. We compared the performance of multiple deformable object simulations between CPU and GPU to analyze the effectiveness of parallel processing using GLSL. Moreover, we measured the computation time of bounding box-based collision detection to show that collision detection can be processed in real-time. The experiments using 3D volumetric models with 10K faces showed the GPU-based parallel simulation improves performance by 98% over the CPU-based simulation, and the overall steps including collision detection and rendering could be processed in real-time frame rate of 218.11 FPS.
Matrix multiplication is a fundamental mathematical operation that has numerous applications across most scientific fields. In this paper, we presents a parallel GPU computation algorithm for dense matrix-matrix multiplication using OpenGL compute shader, which can play a very important role as a fundamental building block for many high-performance computing applications. Experimental results on NVIDIA Quad 4000 show that the proposed algorithm runs about 208 times faster than previous CPU algorithm and achieves performance of 75 GFLOPS in single precision for dense matrices with matrix size 4,096. Such performance proves that our algorithm is practical for real applications.
Recently a GPU has acquired programmability to perform general purpose computation fast by running thousands of threads concurrently. This paper presents a parallel GPU computation algorithm for dense matrix-matrix addition and scalar multiplication using OpenGL compute shader. It can play a very important role as a fundamental building block for many high-performance computing applications. Experimental results on NVIDIA Quad 4000 show that the proposed algorithm runs 21 times faster than CPU algorithm and achieves performance of 16 GFLOPS in single precision for dense matrices with size 4,096. Such performance proves that our algorithm is practical for real applications.
오늘날 3D 다이내믹 시뮬레이션은 많은 산업들과 밀접한 관계를 가지고 있다. 과거에는 자동차 충돌, 건축물 분야에서 주로 사용되었으나 최근에는 영화나 게임 분야에도 물리 시뮬레이션이 중요한 역할을 하고 있다. 일반적으로 3D 물체를 사실적으로 표현하기 위해서는 많은 수학적 연산이 필요하기 때문에 기존의 CPU 기반의 응용 프로그램들은 이러한 많은 연산량을 실시간으로 처리하는데 무리가 있다. 최근 그래픽 하드웨어의 발전과 아키텍쳐의 개선으로 GPU는 기존의 렌더링 연산뿐만 아니라 범용 목적의 연산 기능을 제공하고 있고 이러한 GPU를 활용하는 연구가 활발히 진행되고 있다. 본 논문에서는 GPU를 이용한 천 시뮬레이션 수행시 수행 성능을 최적화하기 위하여, GPU 셰이더의 실행 환경 변화에 따른 천 시뮬레이션 알고리즘의 수행 성능의 변화를 분석하였다. GPU를 이용한 천 시뮬레이션은 GLSL 4.3의 Compute shader를 사용하여 스프링 중심 알고리즘과 노드 중심 알고리즘을 PC기반으로 구현하였고, GLSL Compute shader의 다양한 워크 그룹 (Work Group) 크기와 차원 분배에 따른 연산 속도의 변화를 비교 분석하였다. 실험은 5,000 프레임까지 10회 반복 수행하여 FPS(Frame Per Second)의 평균을 구하여 진행하였다. 실행결과, 노드 중심의 알고리즘이 오히려 스프링 중심의 알고리즘 보다 빠른 수행속도를 보여 주었다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제8권3호
/
pp.1058-1070
/
2014
There are two major ways to implement depth estimation, multiple image depth estimation and single image depth estimation, respectively. The former has a high hardware cost because it uses multiple cameras but it has a simple software algorithm. Conversely, the latter has a low hardware cost but the software algorithm is complex. One of the recent trends in this field is to make a system compact, or even portable, and to simplify the optical elements to be attached to the conventional camera. In this paper, we present an implementation of depth estimation with a single image using a graphics processing unit (GPU) in a desktop PC, and achieve real-time application via our evolutional algorithm and parallel processing technique, employing a compute shader. The methods greatly accelerate the compute-intensive implementation of depth estimation with a single view image from 0.003 frames per second (fps) (implemented in MATLAB) to 53 fps, which is almost twice the real-time standard of 30 fps. In the previous literature, to the best of our knowledge, no paper discusses the optimization of depth estimation using a single image, and the frame rate of our final result is better than that of previous studies using multiple images, whose frame rate is about 20fps.
In this paper, we considered that recently 3D game characters have been almost alike realistic expression because of a great mathematical computation and efficient techniques on GPU hardware. We presented the rendering technique and analysis for 3D game characters to simulate and render mathematical approach model from recent researches to perform the game engine for the surface reflection of lighting model. We compare our approach with the existing variant rendering techniques here using Open GL shader language on game engine. The experimental result will be provided the view-dependent visual appearance of variant and effective modeling characters for realistic expression using existing methods on the GPU for effective simulations and rendering process. Since there are many operations that are used redundantly while performing mathematical operations, the necessary functions and requirements have been to compute in advance.
본 연구는 10만 개 이상의 움직이는 파티클 각각이 발광원으로서 존재할 때 라이팅을 위한 실시간 렌더링 알고리즘을 제안한다. 각 라이트의 영향 범위를 동적으로 파악하기 위해 2개의 3D 텍스처를 사용하며 첫 번째 텍스처는 라이트 색상 두 번째 텍스처는 라이트 방향 정보를 가진다. 각 프레임마다 두 단계를 거친다. 첫 단계는 Compute shader 기반으로 3D 텍스처 초기화 및 렌더링에 필요한 파티클 정보를 갱신하는 단계이다. 이때 파티클 위치를 3D 텍스처의 샘플링 좌표로 변환 후 이 좌표를 기반으로 첫 번째 3D 텍스처엔 해당 복셀에 대해 영향을 미치는 파티클 라이트들의 색상 총합을, 그리고 두 번째 3D 텍스처에 해당 복셀에서 파티클 라이트들로 향하는 방향벡터들의 총합을 갱신한다. 두 번째 단계는 일반 렌더링 파이프라인을 기반으로 동작한다. 먼저 렌더링 될 폴리곤 위치를 기반으로 첫 번째 단계에서 갱신된 3D 텍스처의 정확한 샘플링 좌표를 계산한다. 샘플링 좌표는 3D 텍스쳐의 크기와 게임 월드의 크기가 1:1로 대응하므로 픽셀의 월드좌표를 그대로 샘플링 좌표로 사용한다. 샘플링한 픽셀의 색상과 라이트의 방향벡터를 기반으로 라이팅 처리를 수행한다. 3D 텍스처가 실제 게임 월드와 1:1로 대응하며 최소 단위를 1m로 가정하는데 1m보다 작은 영역의 경우 해상도 제한에 의한 계단 현상 등의 문제가 발생한다. 이러한 문제를 개선하기 위한 텍스처 샘플링 시 보간 및 슈퍼 샘플링을 수행한다. 한 프레임을 렌더링하는데 소요된 시간을 측정한 결과 파티클이 라이트의 개수가 262144개일 때 Forward Lighting 파이프라인에서 146ms, deferred Lighting 파이프라인에서 46ms 가 소요되었으며, 파티클 라이트의 개수가 1024576개일 때 Forward Lighting 파이프라인에서 214ms, Deferred Lighting 파이프라인에서 104ms 가 소요되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.