
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 3 Mar. 2014 1058

Copyright ⓒ 2014 KSII

http://dx.doi.org/10.3837/tiis.2014.03.020

GPU-Accelerated Single Image Depth
Estimation with Color-Filtered Aperture

Yueh-Teng Hsu
1
, Chun-Chieh Chen

2
 and Shu-Ming Tseng

3

1 A-MTK Corp.

Taipei 236, Taiwan

[e-mail: mathew@a-mtk.com]
2 Department of Electronic Engineering, National Taipei University of Technology

Taipei 106, Taiwan

[e-mail: jjchen0420@gmail.com]
3 Department of Electronic Engineering, National Taipei University of Technology

Taipei 106, Taiwan

[e-mail: shuming@ntut.edu.tw]

*Corresponding author: Shu-Ming Tseng

Received November 19, 2013; accepted January 23, 2014; published March 31, 2014

Abstract

There are two major ways to implement depth estimation, multiple image depth estimation

and single image depth estimation, respectively. The former has a high hardware cost

because it uses multiple cameras but it has a simple software algorithm. Conversely, the

latter has a low hardware cost but the software algorithm is complex. One of the recent

trends in this field is to make a system compact, or even portable, and to simplify the

optical elements to be attached to the conventional camera. In this paper, we present an

implementation of depth estimation with a single image using a graphics processing unit

(GPU) in a desktop PC, and achieve real-time application via our evolutional algorithm and

parallel processing technique, employing a compute shader. The methods greatly

accelerate the compute-intensive implementation of depth estimation with a single view

image from 0.003 frames per second (fps) (implemented in MATLAB) to 53 fps, which is

almost twice the real-time standard of 30 fps. In the previous literature, to the best of our

knowledge, no paper discusses the optimization of depth estimation using a single image,

and the frame rate of our final result is better than that of previous studies using multiple

images, whose frame rate is about 20fps.

Keywords: Real time, graphics processing unit, parallel processing technique, compute

shade

1059 Hsu et al.: GPU-Accelerated Single Image Depth Estimation with Color-Filtered Aperture

1. Introduction

A GPU is installed in most computing devices such as the personal computer (PC) and

smart phone, and it can provide almost all the data processing operations required in the

field of digital signal processes and digital image processes. Although the modern

multi-core central processing unit (CPU) has good performance, the speed of the other

tasks originally assigned to it may be decreased while it implements the depth estimation

task. As regards three-dimensional (3D) game graphics, however, GPUs are seldom used

most of the time. The best advantage of using the GPU is its parallel processing capability,

which means that it is able to process many data at the same time in parallel by using its

large supply of powerful arithmetic logic units (ALUs). In [1], the author uses GPUs to

accelerate the implementation of parameterized baseband models for two different

orthogonal frequency division multiplexing (OFDM) protocols of 802.11a and 802.16 and

achieve real-time throughput. In [2], the author shows a design example of a mobile

WiMAX terminal implemented on the GPU platform which is nearly 90 times faster than

the conventional DSP-driven modem. In [3], a novel scheme that accelerates password

recovery of PDF files on GPUs using a compute unified device architecture (CUDA) is

proposed, and the experimental results show that this scheme has higher speed

performance at low cost.
There are several ways to realize depth estimation, generally divided into two categories:

multiple image depth estimation [4][5][6] and single image depth estimation [7] [8] [9], the

advantage of the former is fast implementation thanks to its simple algorithm but it has the

drawback of higher hardware cost of multiple cameras. Accordingly, it is easier to achieve

real time by utilizing multiple images to estimate depth density [5] [4]. On the other hand,

the latter method has a lower hardware cost with only one camera, but it is quite difficult to

achieve real time because of its numerous mathematical calculations. One of the recent

trends in this field is to make a system compact, or even portable, and to simplify the

optical elements to be attached to the conventional camera [10][11] and the smart mobile.

Consequently, our research focuses on accelerating the depth estimation process with a

single image until finally we achieve real time by employing our evolutional algorithm and

complete the implementation on a GPU which has powerful computing capability.

 Dense depth estimation with either a single view image or multiple images has been

explored for decades, and a wealth of literature discusses the speed performance of the

latter much more than that of the former. The reason is that it is still a challenge to obtain a

good performance by using only a single image to estimate depth because of its complex

calculation. The implementation optimized by two-dimension (2-D) generalization of

dynamic programming (DP) [12] is precise; however, the optimized scheme is too complex

to achieve real-time application. In [13], the authors use single instruction multiple data

(SIMD) like MMX and SSE on a CPU to reconstruct depth maps via multiple images,

utilizing parallel processing to achieve real-time performance but with lower precision. In

[5][4], real-time performance utilizing multiple images based on GPU is achieved. The

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 3 Mar. 2014 1060

Copyright ⓒ 2014 KSII

author in [5] presents an algorithm relying on the conventional sum of square difference

(SSD) dissimilarity measure between correlation windows. The author in [4] extends the

basic idea of simple plane sweep to generalized search spaces of any geometry and

maintains performance.

 All the literature discussed in the previous paragraph implements depth estimation using

multiple images. To the best of our knowledge, there is still no literature on real-time depth

map application using single image. In our approach, we follow the basic idea of depth

estimation with a single image presented by [7]. The prefix sum [14] algorithm included in

the box filter method [15] is modified to be suited to data-parallel processing in the GPU.

With implementation on a compute shader, which is a programmable shader that expands

Microsoft Direct3D 11 beyond graphics programming and provides high-speed general

purpose computing to take advantage of the large numbers of parallel processors on a GPU,

we achieve real-time performance of 53 fps with a single image scenario which is even

more than the frame rate (20 fps) achieved by[4] with multiple images.

 The remainder of this paper is organized as follows. We present a camera with

color-filtered aperture in Section 2. In Section 3, we introduce the depth estimation

algorithm. In Section 4, we explain the computational complex of the algorithm and

present some methods to reduce it. In Section 5, we take simple examples to illustrate

box-filter and prefix sum methods. Depth estimation results are presented in Section 6.

Section 7 concludes.

2. Color-filtered Aperture

Our camera lens equipped with color filters is shown in Fig. 1. The RGB filters displace the

captured image of the sensor with respect to the center. According to our placement of

RGB filters, if an object is further than the focused depth, the captured image will have a

rightward shift in the R plane, a leftward shift in the B plane, and an upward shift in the G

plane. If an object is nearer than the focused depth, the captured image will be shifted in the

opposite directions. Fig. 2 shows the displacement of the R (top right), G (bottom right)

and B (bottom left) planes, and the red lines highlight the shift between each of two RGB

components.

 We use a Canon EOS40D DSLR for implementation, and we cut out a disc with a triple

square-shaped hole from a piece of black cardboard (the same fabrication process as in [7]),

and make color filters (Fujifilter SC-58, BPB-53, and BPB-45) stick to it, then attach it in

front of a Canon EF 50mm f/1.8 II lens. The fabrication process is simple and takes little

time.

1061 Hsu et al.: GPU-Accelerated Single Image Depth Estimation with Color-Filtered Aperture

(a) (b)

Fig. 1. (a) Camera lens equipped with color filters placed in front of the aperture (b) color filter

placement

Fig. 2. Example of captured image (top left) and its R component (top right),G component (bottom

right) and B component (bottom left). The red lines are superimposed to highlight the displacement

of each component.

R

G B

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 3 Mar. 2014 1062

Copyright ⓒ 2014 KSII

3. Depth Estimation Method

The image we have captured is a form of RGB plane consisting of rI , gI , and bI , and

because of the RGB color-filter placed in front of the lens, as shown in Fig. 1, we can

observe that a scene pixel further than the focused depth has a rightward shift in the R plane,

a leftward shift in the B plane, and an upward shift in the G plane. As a result, if we assume

that pixel),(yx has a disparity d , we can find the aligned pixel at),(ydxI r  ,),(dyxI g  ,

and),(ydxIb  .

 We determine the window size according to the captured image size and we slide the

window through the whole captured image from left to right, from top to bottom. We

denote),(yxw as a window around),(yx , and consider a set);,(I dyxS of pixel colors

with hypothesized disparity d as

           yxwtstdsIdtsItdsIdyx bgr ,, | ,,,,,);,(SI  . To rectify the misalignment,

we should search for d to minimize the following color alignment metric [7]

222

210);,(
bgr

dyxL



 (1)

where 0 , 1 , and 2 are the descending positive eigenvalues of the covariance matrix 

of);,(I dyxS , and
2

r ,
2

g and
2

b are the variance of),(ydxI r  ,),(dyxI g  , and

),(ydxIb  , respectively, and also the diagonal elements of  . According to principal

component analysis (PCA) [20], the product of eigenvalues is equal to the determinant of

 , and the color alignment metric L in (1) is smaller when 0 is much larger than the 1

and 2 ; then the distribution of the pixel colors within the window in the RGB space will

be elongated, which means that the pixels of RGB planes are more correlated after

shiftingd pixels toward the virtual center.

4. Computational Complexity: Explanation and Reduction

For each window (described in Section 3) within the captured image, we have to calculate

all the elements of the covariance matrix of each RGB plane with disparity d denoted by

);,(I dyxS , including variance of);,(I dyxS and covariance of each pair of);,(I dyxS , to

obtain the color alignment metric dL with disparity d within a local window. We search for

all the disparity d (-5 to 10 in our implementation) to find the smallest color alignment

metric L̂

1063 Hsu et al.: GPU-Accelerated Single Image Depth Estimation with Color-Filtered Aperture

d
d

LL minˆ 

Then we slide the window by one pixel and repeat the above process until we have gone

through the whole captured image. It is easy to see that there is a large amount of

computation, especially as we have to calculate the variance and covariance a number of

times. Assuming R and G are random variables of R plane and G plane within a local

window, the variance of R and covariance of R and G can be calculated as follows:

E[R]E[G]E[RG]GRCov

E[R]]E[RRVar





),(

)(22

 (2)

where E[.] represents the expectation operator. The four items of Eq. (2) need to obtain the

sum of the pixels in either R or G plane within a window; therefore, we employ the box

filter [15] to improve the speed of calculating the variance and covariance, so the

complexity will be reduced. The box filter executes four operations for each output picture

pixel and is independent of the box size. Using this method we can calculate the

expectations of all pixel values belonging to each window in a captured image at one time.

It greatly reduces the cycles of calculation and also significantly accelerates our

implementation.

To use the box filter method, all the pixel’s values of each RGB component must first be

accumulated, which is a sequential operation. Unfortunately, such an operation is hard to

realize in a GPU, which usually processes data in parallel. Therefore, we utilize the prefix

sum algorithm, which is a parallel operation for cumulating pixels. The details are

discussed in [14][16].

5. Explanation of Box-filter and Prefix Sum

In this section, we explain the effect of the box-filter [15] and prefix sum [14][16] by means

of simple examples.

5.1 Box-filter

We take the simple case of a 55 image as shown in Fig. 3(a), and the numbers inside the

frame are assumed to be the intensity of the pixels. The sliding window size is assumed to

be 22 . First, we obtain the cumulation of Fig. 3(a) by a two-step operation which

cumulates the value in the horizontal (Fig. 3(b)) and vertical directions (Fig. 3(c)). If we

want to obtain the sum of the values inside the red rectangular window in Fig. 3(a), it could

be calculated by the following operation:

4+10-16-39=17=8+1+5+3

The numbers on the right-hand side are highlighted by a red rectangle in Fig. 3 (c). It is

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 3 Mar. 2014 1064

Copyright ⓒ 2014 KSII

easy to extend this to calculate the sum of each window, and could be done in parellel by a

GPU.

1 3 4 2 8 1 4 8 10 18 1 4 8 10 18

3 1 3 5 2 3 4 7 12 14 4 8 15 22 32

2 6 1 8 3 2 8 9 17 20 6 16 24 39 52

4 4 9 2 2 4 8 17 19 21 10 24 41 58 73

1 6 5 1 4 1 7 12 13 17 11 31 53 71 90

(a) (b) (c)

Fig. 3. (a) An example of a 55 image (b) The cumulation of (a) in the horizontal direction (c) The

cumulation of (b) in the vertical direction

5.2 Prefix Sum

As described in Section 6.1, we should calculate the cumulation in the horizontal and

vertical directions. A prefix sum algorithm is modified such that it can be data-parallel

processing in the GPU. In the following, we use a simple example to explain this method.

Fig. 4 illustrates an example of the prefix sum algorithm when the sequence length is eigh.

The parameter d is one initially, and it grows of a power of two in each stage until it

achieves half the sequence length (=4 in Fig. 4). The ith value (i>d) of the sequence in one

stage is the sum of the ith and jth (j=i-d) values of the sequence in the previous stage. Fig.

4 shows a simple case of eight values. Following the steps described above, we can see the

bottom row is a cumulation of the top row. It is also easy to extend the process from 1-D to

2-D, and we can use the GPU to calculate the prefix sum in parallel, which greatly speeds

up this operation.

6 5 1 4 0 3 6 9

 02d 

1065 Hsu et al.: GPU-Accelerated Single Image Depth Estimation with Color-Filtered Aperture

6 11 6 5 4 3 9 15

6 11 12 16 10 8 13 18

6 11 12 16 16 19 25 34

Fig. 4. Illustration of prefix sum

6. Depth Estimation Result

In this section, we implement the depth estimation in the hardware environment listed in

Table 1. For software, we consider three languages: Matlab, C++ and compute shader. We

use C++ along with Integrated Performance Primitives (IPP) library which is an extensive

library of multicore-ready and highly optimized software functions with single instruction

multiple data (SIMD) instructions. The compute shader we use is a shader language of

DirectX 11. The languages’ platform and version are listed in Table 2. The image in our

implementation has a pixel resolution of 640480.

 As shown in Table 3, the CPU loading of the compute shader is almost zero, because the

process is running on a GPU, which means that it does not affect the processes executed in

a CPU. The frame rates of Matlab employing a box filter algorithm are almost 40 times

greater than if it did not use a box filter algorithm. The performance of C++ using the IPP

library is 5.3 times faster than it would be in Matlab. Finally, the performance of the

compute shader is about 80 times faster than C++ and 420 times faster than Matlab. The

implemented compute shader has a frame rate of 52.63fps, which exceeds the recognized

real-time standard of 30fps. The standard is based on a well-known real-time television

system, NTSC (National Television System Committee), whose frame rate is 29.97 fps [17]

[18].

Table 1. Hardware list

Item Model

CPU
Intel core i7 2.93-GHz

12d 

22d 

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 3 Mar. 2014 1066

Copyright ⓒ 2014 KSII

Memory
DDR3 4GB RAM

Mainboard
ASUS BM5295

Graphic Card
NVIDIA Geforce GT430

Table 2. List of languages, platform and version

Language Platform Version

Matlab Matlab 2008b

C++ Visual studio 2010

Compute shader DirectX 11 CS5.0

Table 3. Performance comparison of depth estimation among different languages for a 640480

image

Language CPU loading

(%)

Frame rates (fps)

Matlab(no GPU) 14 0.003

Matlab (box filter)(no GPU) 14 0.125

C++ (IPP library)

(box filter)(no GPU)

10 0.667

Compute shader

(box filter)(GPU)

1 52.63

Fig. 5(a) shows the captured image taken with a lens attached by color filters and the

camera focused on the background which is the farthest object from the image. We can see

that the nearest object has the largest displacement. For example, the nearest beverage can

is more misaligned than the next one, and that one is more misaligned than the farthest one.

The depth map is presented in Fig. 5(b), where the whiter color shows that the region has a

smaller displacement. We can see that the nearer object in Fig. 5(a) corresponds to a

darker region in Fig. 5(b). The depth estimation which is a kind of local optimization has

1067 Hsu et al.: GPU-Accelerated Single Image Depth Estimation with Color-Filtered Aperture

two major limitations, however. The first is that the texture of the local region should be

reasonably obvious, as highlighted by yellow circles in Fig. 5(b). The second is that objects

should not have too high a proportion of single, pure R, G, or B colors, as does the bottle of

the nearest beverage highlighted by the red circle in Fig. 5(b). Local optimization such as

normalized cross-correlation (NCC) [19] and PCA [20] cannot solve the problem of

misestimation. Global optimization such as graphic cut [21][7] and dynamic programming

[22] may partially solve this problem, but there is still the difficulty that objects must not be

of one pure color. We would like to further investigate the problem of misestimation in

future research.

(a)

(b)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 3 Mar. 2014 1068

Copyright ⓒ 2014 KSII

Fig. 5. (a) The captured image. The foreground color is misaligned. (b) Estimated depth (the darker,

the nearer)

7. Conclusions

We present an implementation of depth estimation from a single image. It is recognized

that computational complexity is the main challenge to implementing depth estimation in

real time, especially with a single image. In this paper, we propose an evolutional algorithm

and modify it to fit the data-parallel processing of a GPU. The speed of the final result with

a compute shader was 52fps. Previous research using multiple images obtained 20fps, so

our result is about 2.5 times better. It is noteworthy that we use only a single image with

one camera and lens but obtain higher frame rates.

 We also compare the performance of several program languages with and without

additional algorithms, and the result shows that our evolutional algorithm can improve the

performance of frame rates about 40-fold. Moreover, the final implementation in a

compute shader based on a GPU, which is 80 times faster than one implemented in C++

employing an IPP library and 420 times faster than one implemented in Matlab (all three

use our evolutional algorithm), has frame rates up to 52 fps, exceeding the recognized

real-time standard of 30 fps. Consequently the implementation of depth estimation with a

single image on a GPU with our evolutional algorithm has greatly improved performance

and successfully achieved real-time application.

References

[1] Rongchun Li, Yong Dou, Jie Zhou, Baofeng Li and Jinbo Xu, “From WiFi to WiMAX:

Efficient GPU-based Parameterized Transceiver across Different OFDM Protocols,” KSII

Transactions on Internet and Information systems, vol. 7, no. 8, pp. 1911-1932, August, 2013.

 Article (CrossRef Link)

[2] J. Kim and S. Hyeon, “Implementation of an SDR System Using Graphics Processing Unit,”

IEEE Communications Magazine, vol. 48, no. 3, pp. 156-162, March, 2010.

 Article (CrossRef Link)

[3] K. Kim, S. Lee, D. Hong and J. C. Ryou, “GPU-Accelerated Password Cracking of PDF

Files,” KSII Transactions on Internet and Information Systems, vol. 5, no. 11, pp. 2235-2253,

November, 2011.

 Article (CrossRef Link)

[4] J. Woetzel and R. Koch, “Real-time Multi-stereo Depth Estimation on GPU with

Approximative Discontinuity Handling,” in Proc. of 1st European Conference on Visual

Media Production (CVMP), pp. 245-254, March, 2004.

 Article (CrossRef Link)

[5] R. Yang and M. Pollefeys, “Multiresolution Real-time Stereo on Commodity Graphics

Hardware,” in Proc. of Conference Society on Computer Vision and Pattern Recognition

http://connection.ebscohost.com/c/articles/90083182/from-wifi-wimax-efficient-gpu-based-parameterized-transceiver-across-different-ofdm-protocols
http://dx.doi.org/10.1109/MCOM.2010.5434388
http://dx.doi.org/10.3837/tiis.2011.11.021
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1374688&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1374688

1069 Hsu et al.: GPU-Accelerated Single Image Depth Estimation with Color-Filtered Aperture

(CVPR), vol. 1, pp. 211-217, June, 2003.

 Article (CrossRef Link)

[6] C. Zach, A. Klaus, B. Reitinger and K. Karner, “Optimized Stereo Reconstruction Using 3D

Graphics Hardware,” in Proc. of Workshop of Vision, Modeling and Visualization (VMV), pp.

119-126, August, 2003.

 Article (CrossRef Link)

[7] Y. Bando, B. Chen and T. Nishita, “Extracting Depth and Matte Using a Color-filtered

Aperture,” ACM Transactions on Graphics (TOG), vol. 27, no. 5, pp.1–9, December, 2008.

 Article (CrossRef Link)

[8] B. Liu, S. Gould and D. Koller, “Single Image Depth Estimation from Predicted Semantic

Labels,” in Proc. of IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

pp. 1253-1260, June, 2010.

 Article (CrossRef Link)

[9] S. H. Lai, C. W. Fu & S. Chang, "A Generalized Depth Estimation Algorithm with a Single

Image," IEEE Transactions on Pattern Analysis ans Machine Intelligence (PAMI), vol.14, no.

4, pp. 405-411, April, 1992.

 Article (CrossRef Link)

[10] R.Ng, M. Levoy, M. Br é Dif, G. Duval, M. Horowitz and P. Hanrahan, “Light Field

Photography with Hand-held Plenoptic Camera,” Tech. Rep. CSTR 2005-02, Stanford

Computer Science, April, 2005.

 Article (CrossRef Link)

[11] A. Veeraraghavan, R. Raskar, A. Agrawal, A. Mohan and J. Tumblin, “Dappled photography:

mask enhanced cameras for heterodyned light fields and coded aperture refocusing,” ACM

Transactions on Graphics (TOG), vol. 26, no. 3, pp. 1-12, 2007.

 Article (CrossRef Link)

[12] V. Kolmogorov and R. Zabih, “Multi-camera Scene Reconstruction via Graph Cuts,” in Proc.

of Seventh European Conf. Computer Vision, vol 3, pp. 82-96, May, 2002.

 Article (CrossRef Link)

[13] H. Hirschmueller, “Improvements in Realtime Correlation-based Stereo Vision,” in Proc. of

IEEE Workshop on Stereo and Multi- Baseline Vision, pp. 141-148, December, 2001.

 Article (CrossRef Link)

[14] S. Sengupta, A. E. Lefohn and J. D. Owens, “A Work-efficient Step-efficient Prefix Sum

Algorithm,” in Proc. of the Workshop on Edge Computing Using New Commodity

Architecture, pp. 26-27, May, 2006.

 Article (CrossRef Link)

[15] M. J. McDonnell, “Box-filtering Techniques,” Computer Graphics and Image Processing, vol.

17, pp. 65-70, 1981.

 Article (CrossRef Link)

[16] D. W. Hillis and G.L.Steele, Jr, “Data Parallel Algorithms,” Communications of the ACM, vol.

29, no. 12, pp. 1170-1183, December,1986.

Article (CrossRef Link)

[17] Richard Williams, “All in Good Timecode,” Adobe Magazine, pp. 57-59, 1999.

 Article (CrossRef Link)

[18] Ze-Nian Li and Mark S.Drew, “Fundamentals of Multimedia,” China Machine Press, p. 104,

2004.

Article (CrossRef Link)

[19] J. P. Lewis, “Fast Template Matching,” in Proc of Vision Interface, pp. 120-123, May, 1995.

http://dx.doi.org/10.1109/CVPR.2003.1211356
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.5.6032
http://dx.doi.org/10.1145/1409060.1409087
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5521876
http://dx.doi.org/10.1109/CVPR.2010.5539823
http://dx.doi.org/10.1109/34.126803
http://www.citeulike.org/user/hisashim/article/1369925
http://dx.doi.org/10.1145/1276377.1276463
http://dx.doi.org/10.1007/3-540-47977-5_6
http://dx.doi.org/10.1109/SMBV.2001.988772
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.177.8755
http://dx.doi.org/10.1016/S0146-664X(81)80009-3
http://dx.doi.org/10.1145/7902.7903
http://www.adobe.com/products/adobemag/archive/pdfs/99sphtrw.pdf
http://www.cs.sfu.ca/mmbook/

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 3 Mar. 2014 1070

Copyright ⓒ 2014 KSII

 Article (CrossRef Link)

[20] I.T. Jolliffe, Principal Component Analysis, Springer-Verlag, New York, 1986.

Article (CrossRef Link)

[21] J. Kim, V. Kolmogorov and R. Zabih, “Visual Correspondence Using Energy Minimization

and Mutual Information, ” in Proc. of International Conference on Computer Vision (ICCV)

vol.2, pp. 1033-1040, 2003.

 Article (CrossRef Link)

[22] L. Wang, L. Miao, G. Minglun, R. Yang and D Nister,“High-quality Real-time Stereo Using

Adaptive Cost Aggregation and Dynamic Programming,” in Proc. of Third International

Symposium on 3D Data Processing, Visualization and Transmission, pp. 798-805, 2006.

 Article (CrossRef Link)

Yueh-Teng Hsu received an M.Sc. degree in electrical engineering from the

National Taiwan University in 1997 and a Ph.D. in electrical engineering

from Chang Gung University in 2007. From 2004 to 2013, he served as R&D

manager at Liteon Co. and Mitac Co. at Taiwan. Presently he serves as a

Director of R&D at A-MTK Co., developing mobile applications with

GPU-based algorithms. His research interests include parallel computation

algorithms, software basebands of DAB/DVB receivers and computational

photography.

Chun-Chieh Chen received a B.Sc. degree in electronic engineering from

the National Taipei University of Technology in 2012, and studied at the

Graduate Institute at the National Taipei University of Technology.

Shu-Ming Tseng received a B.Sc. degree from the

National Tsing Hua University, Taiwan, and an M.Sc. and Ph.D. from

Purdue University, IN, USA, all in electrical engineering, in 1994, 1995, and

1999, respectively. He worked for the Department of Electrical Engineering,

Chang Gung University, Taiwan, from 1999 to 2001. Since 2001, he has

worked for the Department of Electronic Engineering, the National Taipei

University of Technology, Taiwan, where he is currently a Professor. His

research interests are MIMO, OFDM,queueing analysis, software defined

radio, cooperative communications, and power-line communications. He has

served as an editor for KSII Transactions on Internet and Information

Systems, indexed in SCIE, since 2013. Prof. Tseng served as a Technical

Program Committee member for symposia of the IEEE VTC Fall

2003, WirelessCom 2005, IWCMC 2006, M-CCN

2007, WiCON 2010, ISITA2010/ISSSTA2010, APWCS 2011, etc. He has

been listed in Marquis Who’s Who in the World since 2006. His team

implemented a real-time PC-based software DAB receiver in 2006 and the

real-time PC-based software DVB-T receiver in 2012.

http://www.scribblethink.org/Work/nvisionInterface/vi95_lewis.pdf
http://dx.doi.org/10.1007/978-1-4757-1904-8
http://dx.doi.org/10.1109/iccv.2003.1238463
http://dx.doi.org/10.1109/3DPVT.2006.75

