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Abstract 
 

There are two major ways to implement depth estimation, multiple image depth estimation 

and single image depth estimation, respectively. The former has a high hardware cost 

because it uses multiple cameras but it has a simple software algorithm. Conversely, the 

latter has a low hardware cost but the software algorithm is complex. One of the recent 

trends in this field is to make a system compact, or even portable, and to simplify the 

optical elements to be attached to the conventional camera. In this paper, we present an 

implementation of depth estimation with a single image using a graphics processing unit 

(GPU) in a desktop PC, and achieve real-time application via our evolutional algorithm and 

parallel processing technique, employing a compute shader. The methods greatly 

accelerate the compute-intensive implementation of depth estimation with a single view 

image from 0.003 frames per second (fps) (implemented in MATLAB) to 53 fps, which is 

almost twice the real-time standard of 30 fps. In the previous literature, to the best of our 

knowledge, no paper discusses the optimization of depth estimation using a single image, 

and the frame rate of our final result is better than that of previous studies using multiple 

images, whose frame rate is about 20fps.    
 

 

Keywords: Real time, graphics processing unit, parallel processing technique, compute 

shade
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1. Introduction 

A GPU is installed in most computing devices such as the personal computer (PC) and 

smart phone, and it can provide almost all the data processing operations required in the 

field of digital signal processes and digital image processes. Although the modern 

multi-core central processing unit (CPU) has good performance, the speed of the other 

tasks originally assigned to it may be decreased while it implements the depth estimation 

task. As regards three-dimensional (3D) game graphics, however, GPUs are seldom used 

most of the time. The best advantage of using the GPU is its parallel processing capability, 

which means that it is able to process many data at the same time in parallel by using its 

large supply of powerful arithmetic logic units (ALUs). In [1], the author uses GPUs to 

accelerate the implementation of parameterized baseband models for two different 

orthogonal frequency division multiplexing (OFDM) protocols of 802.11a and 802.16 and 

achieve real-time throughput. In [2], the author shows a design example of a mobile 

WiMAX terminal implemented on the GPU platform which is nearly 90 times faster than 

the  conventional DSP-driven modem. In [3], a novel scheme that accelerates password 

recovery of PDF files on GPUs using a compute unified device architecture (CUDA) is 

proposed, and the experimental results show that this scheme has higher speed 

performance at low cost. 
There are several ways to realize depth estimation, generally divided into two categories: 

multiple image depth estimation [4][5][6] and single image depth estimation [7] [8] [9], the 

advantage of the former is fast implementation thanks to its simple algorithm but it has the 

drawback of higher hardware cost of multiple cameras. Accordingly, it is easier to achieve 

real time by utilizing multiple images to estimate depth density [5] [4]. On the other hand, 

the latter method has a lower hardware cost with only one camera, but it is quite difficult to 

achieve real time because of its numerous mathematical calculations. One of the recent 

trends in this field is to make a system compact, or even portable, and to simplify the 

optical elements to be attached to the conventional camera [10][11] and the smart mobile. 

Consequently, our research focuses on accelerating the depth estimation process with a 

single image until finally we achieve real time by employing our evolutional algorithm and 

complete the implementation on a GPU which has powerful computing capability. 

   Dense depth estimation with either a single view image or multiple images has been 

explored for decades, and a wealth of literature discusses the speed performance of the 

latter much more than that of the former. The reason is that it is still a challenge to obtain a 

good performance by using only a single image to estimate depth because of its complex 

calculation. The implementation optimized by two-dimension (2-D) generalization of 

dynamic programming (DP) [12] is precise; however, the optimized scheme is too complex 

to achieve real-time application. In [13], the authors use single instruction multiple data 

(SIMD) like MMX and SSE on a CPU to reconstruct depth maps via multiple images, 

utilizing parallel processing to achieve real-time performance but with lower precision.  In 

[5][4], real-time performance utilizing multiple images based on GPU is achieved. The 
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author in [5] presents an algorithm relying on the conventional sum of square difference 

(SSD) dissimilarity measure between correlation windows. The author in [4] extends the 

basic idea of simple plane sweep to generalized search spaces of any geometry and 

maintains performance.  

    All the literature discussed in the previous paragraph implements depth estimation using 

multiple images. To the best of our knowledge, there is still no literature on real-time depth 

map application using single image.  In our approach, we follow the basic idea of depth 

estimation with a single image presented by [7]. The prefix sum [14] algorithm included in 

the box filter method [15] is modified to be suited to data-parallel processing in the GPU. 

With implementation on a compute shader, which is a programmable shader that expands 

Microsoft Direct3D 11 beyond graphics programming and provides high-speed general 

purpose computing to take advantage of the large numbers of parallel processors on a GPU, 

we achieve real-time performance of 53 fps with a single image scenario which is even 

more than the frame rate (20 fps) achieved by[4] with multiple images. 

    The remainder of this paper is organized as follows. We present a camera with 

color-filtered aperture in Section 2. In Section 3, we introduce the depth estimation 

algorithm. In Section 4, we explain the computational complex of the algorithm and 

present some methods to reduce it. In Section 5, we take simple examples to illustrate 

box-filter and prefix sum methods. Depth estimation results are presented in Section 6. 

Section 7 concludes.     

2. Color-filtered Aperture 

 

Our camera lens equipped with color filters is shown in Fig. 1. The RGB filters displace the 

captured image of the sensor with respect to the center. According to our placement of 

RGB filters, if an object is further than the focused depth, the captured image will have a 

rightward shift in the R plane, a leftward shift in the B plane, and an upward shift in the G 

plane. If an object is nearer than the focused depth, the captured image will be shifted in the 

opposite directions. Fig. 2 shows the displacement of the R (top right), G (bottom right) 

and B (bottom left) planes, and the red lines highlight the shift between each of two RGB 

components.  

    We use a Canon EOS40D DSLR for implementation, and we cut out a disc with a triple 

square-shaped hole from a piece of black cardboard (the same fabrication process as in [7]), 

and make color filters (Fujifilter SC-58, BPB-53, and BPB-45) stick to it, then attach it in 

front of a Canon EF 50mm f/1.8 II lens. The fabrication process is simple and takes little 

time.   
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(a)                           (b) 

 

 

Fig. 1. (a) Camera lens equipped with color filters placed in front of the aperture (b) color filter 

placement 

 

 

 

 

 
Fig. 2. Example of captured image (top left) and its R component (top right),G component (bottom 

right) and B component (bottom left). The red lines are superimposed to highlight the displacement 

of each component. 

 

 

 

R 
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3. Depth Estimation Method 

The image we have captured is a form of RGB plane consisting of rI  , gI , and bI , and 

because of the RGB color-filter placed in front of the lens, as shown in Fig. 1, we can 

observe that a scene pixel further than the focused depth has a rightward shift in the R plane, 

a leftward shift in the B plane, and an upward shift in the G plane. As a result, if we assume 

that pixel ),( yx  has a disparity d , we can find the aligned pixel at  ),( ydxI r  , ),( dyxI g  , 

and ),( ydxIb  . 

   We determine the window size according to the captured image size and we slide the 

window through the whole captured image from left to right, from top to bottom. We 

denote ),( yxw as a window around ),( yx , and consider a set );,(I dyxS of pixel colors 

with hypothesized disparity d as 

           yxwtstdsIdtsItdsIdyx bgr ,,  |  ,,,,,);,(SI  . To rectify the misalignment, 

we should search for d to minimize the following color alignment metric [7] 

 

                                                   
222

210);,(
bgr

dyxL



                                            (1) 

 

where 0 , 1 , and 2 are the descending positive eigenvalues of the covariance matrix   

of );,(I dyxS , and 
2

r ,
2

g and 
2

b are the variance of ),( ydxI r   , ),( dyxI g   , and    

),( ydxIb  , respectively, and also the diagonal elements of   . According to principal 

component analysis (PCA) [20], the product of eigenvalues is equal to the determinant of  

 , and  the color alignment metric L in (1) is smaller when  0  is much larger than the 1  

and 2 ; then the distribution of the pixel colors within the window in the RGB space will 

be elongated, which means that the pixels of RGB planes are more correlated after 

shiftingd pixels toward the virtual center.   

4. Computational Complexity: Explanation and Reduction 

 

For each window (described in Section 3) within the captured image, we have to calculate 

all the elements of the covariance matrix of each RGB plane with disparity d denoted by 

);,(I dyxS , including variance of );,(I dyxS  and covariance of each pair of );,(I dyxS , to 

obtain the color alignment metric dL with disparity d within a local window.  We search for 

all the disparity d (-5 to 10 in our implementation) to find the smallest color alignment 

metric L̂  
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d
d

LL minˆ   

 

Then we slide the window by one pixel and repeat the above process until we have gone 

through the whole captured image. It is easy to see that there is a large amount of 

computation, especially as we have to calculate the variance and covariance a number of 

times. Assuming R and G are random variables of R plane and G plane within a local 

window, the variance of R and covariance of R and G can be calculated as follows: 

 

                                         
E[R]E[G]E[RG]GRCov

E[R]]E[RRVar





),(

)( 22

                                       (2) 

 

where E[.] represents the expectation operator. The four items of Eq. (2) need to obtain the 

sum of the pixels in either R or G plane within a window; therefore, we employ the box 

filter [15] to improve the speed of calculating the variance and covariance, so the 

complexity will be reduced. The box filter executes four operations for each output picture 

pixel and is independent of the box size. Using this method we can calculate the 

expectations of all pixel values belonging to each window in a captured image at one time. 

It greatly reduces the cycles of calculation and also significantly accelerates our 

implementation. 

To use the box filter method, all the pixel’s values of each RGB component must first be 

accumulated, which is a sequential operation. Unfortunately, such an operation is hard to 

realize in a GPU, which usually processes data in parallel. Therefore, we utilize the prefix 

sum algorithm, which is a parallel operation for cumulating pixels. The details are 

discussed in [14][16].  

 

5. Explanation of Box-filter and Prefix Sum 
 

In this section, we explain the effect of the box-filter [15] and prefix sum [14][16] by means 

of simple examples. 

5.1 Box-filter 

We take the simple case of a 55  image as shown in Fig. 3(a), and the numbers inside the 

frame are assumed to be the intensity of the pixels. The sliding window size is assumed to 

be 22 . First, we obtain the cumulation of Fig. 3(a) by a two-step operation which 

cumulates the value in the horizontal (Fig. 3(b)) and vertical directions (Fig. 3(c)). If we 

want to obtain the sum of the values inside the red rectangular window in Fig. 3(a), it could 

be calculated by the following operation: 

4+10-16-39=17=8+1+5+3  
 

The numbers on the right-hand side are highlighted by a red rectangle in Fig. 3 (c). It is 
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easy to extend this to calculate the sum of each window, and could be done in parellel by a 

GPU.  
 

 

 

1 3 4 2 8  1 4 8 10 18  1 4 8 10 18 

3 1 3 5 2  3 4 7 12 14  4 8 15 22 32 

2 6 1 8 3  2 8 9 17 20  6 16 24 39 52 

4 4 9 2 2  4 8 17 19 21  10 24 41 58 73 

1 6 5 1 4  1 7 12 13 17  11 31 53 71 90 

(a)                                                      (b)                                                    (c)  

 

 

Fig. 3.  (a) An example of a 55 image (b) The cumulation of (a) in the horizontal direction (c) The 

cumulation of (b) in the vertical direction 

 

5.2 Prefix Sum 

As described in Section 6.1, we should calculate the cumulation in the horizontal and 

vertical directions. A prefix sum algorithm is modified such that it can be data-parallel 

processing in the GPU. In the following, we use a simple example to explain this method. 

Fig. 4 illustrates an example of the prefix sum algorithm when the sequence length is eigh. 

The parameter d is  one initially, and it grows of a power of two in each stage until it 

achieves half the sequence length (=4 in Fig. 4). The ith value (i>d) of the sequence in one 

stage is the sum of the ith and jth (j=i-d) values of the sequence in the previous stage. Fig. 

4 shows a simple case of eight values. Following the steps described above, we can see the 

bottom row is a cumulation of the top row. It is also easy to extend the process from 1-D to 

2-D, and we can use the GPU to calculate the prefix sum in parallel, which greatly speeds 

up this operation. 
 

 

 

 

6 5 1 4 0 3 6 9 

        02d   
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6 11 6 5 4 3 9 15 

        

6 11 12 16 10 8 13 18 

        

6 11 12 16 16 19 25 34 

     

Fig. 4. Illustration of prefix sum 

 

 

6. Depth Estimation Result 

In this section, we implement the depth estimation in the hardware environment listed in 

Table 1.  For software, we consider three languages: Matlab, C++ and compute shader. We 

use C++ along with Integrated Performance Primitives (IPP) library which is an extensive 

library of multicore-ready and highly optimized software functions with single instruction 

multiple data (SIMD) instructions. The compute shader we use is a shader language of 

DirectX 11. The languages’ platform and version are listed in Table 2. The image in our 

implementation has a pixel resolution of 640480. 

    As shown in Table 3, the CPU loading of the compute shader is almost zero, because the 

process is running on a GPU, which means that it does not affect the processes executed in 

a CPU. The frame rates of Matlab employing a box filter algorithm are almost 40 times 

greater than if it did not use a box filter algorithm. The performance of C++ using the IPP 

library is 5.3 times faster than it would be in Matlab. Finally, the performance of the 

compute shader is about 80 times faster than C++ and 420 times faster than Matlab. The 

implemented compute shader has a frame rate of 52.63fps, which exceeds the recognized 

real-time standard of 30fps. The standard is based on a well-known real-time television 

system, NTSC (National Television System Committee), whose frame rate is 29.97 fps [17] 

[18].       
     

Table 1. Hardware list 

Item Model 

CPU 
Intel core  i7 2.93-GHz 

12d   

22d   
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Memory 
DDR3 4GB RAM 

Mainboard 
ASUS BM5295 

Graphic Card 
NVIDIA Geforce GT430 

 

 

Table 2. List of languages, platform and version 

Language Platform Version 

Matlab Matlab 2008b 

C++ Visual studio 2010 

Compute shader DirectX 11 CS5.0 

 

 

Table 3.  Performance comparison of depth estimation among different languages for a 640480 

image 

 

Language CPU loading 

(%) 

Frame rates (fps) 

Matlab(no GPU) 14 0.003 

Matlab (box filter)(no GPU) 14 0.125 

C++ (IPP library) 

(box filter)(no GPU) 

10 0.667 

Compute shader 

(box filter)(GPU) 

1 52.63 

Fig. 5(a) shows the captured image taken with a lens attached by color filters and the 

camera focused on the background which is the farthest object from the image. We can see 

that the nearest object has the largest displacement. For example, the nearest beverage can 

is more misaligned than the next one, and that one is more misaligned than the farthest one. 

The depth map is presented in Fig. 5(b), where the whiter color shows that the region has a 

smaller displacement. We can see that the nearer object in Fig. 5(a) corresponds  to a 

darker region in Fig. 5(b). The depth estimation which is a kind of local optimization has 
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two major limitations, however.  The first is that the texture of the local region should be 

reasonably obvious, as highlighted by yellow circles in Fig. 5(b). The second is that objects 

should not have too high a proportion of single, pure R, G, or B colors, as does the bottle of 

the nearest beverage highlighted by the red circle in Fig. 5(b). Local optimization such as 

normalized cross-correlation (NCC) [19] and PCA [20] cannot solve the problem of 

misestimation. Global optimization such as graphic cut [21][7] and dynamic programming 

[22] may partially solve this problem, but there is still the difficulty that objects must not be 

of one pure color. We would like to further investigate the problem of misestimation in 

future research. 
 

     

(a) 

                          
(b) 
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Fig. 5. (a) The captured image. The foreground color is misaligned. (b) Estimated depth (the darker, 

the nearer)  

7. Conclusions 

 

We present an implementation of depth estimation from a single image. It is recognized 

that computational complexity is the main challenge to implementing depth estimation in 

real time, especially with a single image. In this paper, we propose an evolutional algorithm 

and modify it to fit the data-parallel processing of a GPU. The speed of the final result with 

a compute shader was 52fps. Previous research using multiple images obtained 20fps, so 

our result is about 2.5 times better. It is noteworthy that we use only a single image with 

one camera and lens but obtain higher frame rates. 

 We also compare the performance of several program languages with and without 

additional algorithms, and the result shows that our evolutional algorithm can improve the 

performance of frame rates about 40-fold. Moreover, the final implementation in a 

compute shader based on a GPU, which is 80 times faster than one implemented in C++ 

employing an IPP library and 420 times faster than one implemented in Matlab (all three 

use our evolutional algorithm), has frame rates up to 52 fps, exceeding the recognized 

real-time standard of 30 fps. Consequently the implementation of depth estimation with a 

single image on a GPU with our evolutional algorithm has greatly improved performance 

and successfully achieved real-time application. 
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