• Title/Summary/Keyword: Computational visualization

Search Result 333, Processing Time 0.022 seconds

Mesh size refining for a simulation of flow around a generic train model

  • Ishak, Izuan Amin;Alia, Mohamed Sukri Mat;Salim, Sheikh Ahmad Zaki Shaikh
    • Wind and Structures
    • /
    • v.24 no.3
    • /
    • pp.223-247
    • /
    • 2017
  • By using numerical simulation, vast and detailed information and observation of the physics of flow over a train model can be obtained. However, the accuracy of the numerical results is questionable as it is affected by grid convergence error. This paper describes a systematic method of computational grid refinement for the Unsteady Reynolds Navier-Stokes (URANS) of flow around a generic model of trains using the OpenFOAM software. The sensitivity of the computed flow field on different mesh resolutions is investigated in this paper. This involves solutions on three different grid refinements, namely fine, medium, and coarse grids to investigate the effect of grid dependency. The level of grid independence is evaluated using a form of Richardson extrapolation and Grid Convergence Index (GCI). This is done by comparing the GCI results of various parameters between different levels of mesh resolutions. In this study, monotonic convergence criteria were achieved, indicating that the grid convergence error was progressively reduced. The fine grid resolution's GCI value was less than 1%. The results from a simulation of the finest grid resolution, which includes pressure coefficient, drag coefficient and flow visualization, are presented and compared to previous available data.

Classification of Regional Export Freight Generation based on Geovisual Analytics (시각적 공간분석학 기법을 활용한 지역별 수출화물 발생패턴 유형화)

  • Lee, Jung-Yoon;Ahn, Jae-Seong
    • Spatial Information Research
    • /
    • v.15 no.3
    • /
    • pp.311-322
    • /
    • 2007
  • Geovisual analytics is the new research area that looks fur the way to enable a truly synergetic work of human and visualization tool in analyzing spatio-temporal data. The research challenge for geovisual analytics is developing new geovisualization tools and enhancing human capabilities to analyse, envision, and reason a lot of spatio-temporal changes. With this research area, geovisual analytics is expected to be a new methodology for developing spatial decision support tools. This research is to integrate T scatter plot with computational method to classify the several patterns of the regional fright generation in Korea. The result of this work shows the capabilities provided by geovisual analytics to support spatial decision making.

  • PDF

Experimental and Numerical Studies on the Flow Characteristics of a Fan-Sink (팬싱크의 유동 특성에 관한 실험 및 수치해석적 연구)

  • Lee Kyoung-Yong;Choi Young-Seok;Yun Jae-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.3
    • /
    • pp.225-230
    • /
    • 2006
  • The overall performance and local flow fields of the fan, heat sink, and fan-sink were experimentally and numerically studied to investigate the flow characteristics of a fan-sink. The flow resistance of the heat sink was measured by small fan tester based on AMCA standards and compared with the CFD results to select available cooling fan for the fan-sink. The nonuniform velocity profile behind the fan outlet was shown by the flow visualization. The effects of nonuniform velocities on the performance of heat sink were discussed. To validate the commercial CFD code CFX-5.6, the predicted performance curve was compared with that of fan testing. The local flow fields of the fan-sink were analyzed by CFD results. MFR (multiple frame of reference) was used as a computational model combining rotating fan and stationary heat sink. Through the CFD results of the fan-sink, the flow patterns behind the fan outlet influenced the flow resistance and overall performance of the heat sink.

Human Assisted Fitting and Matching Primitive Objects to Sparse Point Clouds for Rapid Workspace Modeling in Construction Automation (-건설현장에서의 시공 자동화를 위한 Laser Sensor기반의 Workspace Modeling 방법에 관한 연구-)

  • KWON SOON-WOOK
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.5 s.21
    • /
    • pp.151-162
    • /
    • 2004
  • Current methods for construction site modeling employ large, expensive laser range scanners that produce dense range point clouds of a scene from different perspectives. Days of skilled interpretation and of automatic segmentation may be required to convert the clouds to a finished CAD model. The dynamic nature of the construction environment requires that a real-time local area modeling system be capable of handling a rapidly changing and uncertain work environment. However, in practice, large, simple, and reasonably accurate embodying volumes are adequate feedback to an operator who, for instance, is attempting to place materials in the midst of obstacles with an occluded view. For real-time obstacle avoidance and automated equipment control functions, such volumes also facilitate computational tractability. In this research, a human operator's ability to quickly evaluate and associate objects in a scene is exploited. The operator directs a laser range finder mounted on a pan and tilt unit to collect range points on objects throughout the workspace. These groups of points form sparse range point clouds. These sparse clouds are then used to create geometric primitives for visualization and modeling purposes. Experimental results indicate that these models can be created rapidly and with sufficient accuracy for automated obstacle avoidance and equipment control functions.

A Fast Volume Rendering Algorithm for Virtual Endoscopy

  • Ra Jong Beom;Kim Sang Hun;Kwon Sung Min
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.1
    • /
    • pp.23-30
    • /
    • 2005
  • 3D virtual endoscopy has been used as an alternative non-invasive procedure for visualization of hollow organs. However, due to computational complexity, this is a time-consuming procedure. In this paper, we propose a fast volume rendering algorithm based on perspective ray casting for virtual endoscopy. As a pre-processing step, the algorithm divides a volume into hierarchical blocks and classifies them into opaque or transparent blocks. Then, in the first step, we perform ray casting only for sub-sampled pixels on the image plane, and determine their pixel values and depth information. In the next step, by reducing the sub-sampling factor by half, we repeat ray casting for newly added pixels, and their pixel values and depth information are determined. Here, the previously obtained depth information is utilized to reduce the processing time. This step is recursively performed until a full-size rendering image is acquired. Experiments conducted on a PC show that the proposed algorithm can reduce the rendering time by 70- 80% for bronchus and colon endoscopy, compared with the brute-force ray casting scheme. Using the proposed algorithm, interactive volume rendering becomes more realizable in a PC environment without any specific hardware.

Periscope Imaging System Design and Analysis for Flame Front Visualization (화염 정면 가시화를 위한 페리스코프 영상 시스템 설계 및 해석)

  • Shin, Jaeik
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.5
    • /
    • pp.16-23
    • /
    • 2019
  • This paper describes the design and analysis of a periscope imaging system installed at the engine test facility in the Agency for Defense Development. The periscope system is a cylinder-shaped image observation system installed at the rear of the engine and at the top of the diffuser. The periscope system has high risk of breaking because it is directly affected by high temperature (2300 K) and products of combustion. Thus, we used 1D heat transfer calculation, and 2D and 3D CFD analysis to confirm the heat flux and temperature distribution. Also, the cooling performance was verified. In the current design, using the periscope system, we can see flame shapes, control of the nozzle, and stability of the exhaust flow visually.

Triangulation of Voronoi Faces of Sphere Voronoi Diagram using Delaunay Refinement Algorithm (딜러니 개선 알고리듬을 이용한 삼차원 구의 보로노이 곡면 삼각화)

  • Kim, Donguk
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.4
    • /
    • pp.123-130
    • /
    • 2018
  • Triangulation is one of the fundamental problems in computational geometry and computer graphics community, and it has huge application areas such as 3D printing, computer-aided engineering, surface reconstruction, surface visualization, and so on. The Delaunay refinement algorithm is a well-known method to generate quality triangular meshes when point cloud and/or constrained edges are given in two- or three-dimensional space. In this paper, we propose a simple but efficient algorithm to triangulate Voronoi surfaces of Voronoi diagram of spheres in 3-dimensional Euclidean space. The proposed algorithm is based on the Ruppert's Delaunay refinement algorithm, and we modified the algorithm to be applied to the triangulation of Voronoi surfaces in two ways. First, a new method to deciding the location of a newly added vertex on the surface in 3-dimensional space is proposed. Second, a new efficient but effective way of estimating approximation error between Voronoi surface and triangulation. Because the proposed algorithm generates a triangular mesh for Voronoi surfaces with guaranteed quality, users can control the level of quality of the resulting triangulation that their application problems require. We have implemented and tested the proposed algorithm for random non-intersecting spheres, and the experimental result shows the proposed algorithm produces quality triangulations on Voronoi surfaces satisfying the quality criterion.

A study on optimization of duct shape of electric hubless rim-driven propeller (전기구동 림 추진기의 덕트 형상 최적화 연구)

  • Yong-beom PYEON;Jae-Hyun BAE;Hyoung-Ho KIM;Chang-Je LEE
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.59 no.1
    • /
    • pp.65-73
    • /
    • 2023
  • This study analyzed the duct characteristics of hubless rim-driven propeller (RDP) used in underwater robots. In the previous study, flow visualization experiments were performed with an advancing ratio of 0.2 to 1. The vortex at the front of the duct increased in strength while maintaining its size as the advancing ratio decreased. Therefore, it is necessary to study the optimization of the duct shape. Conventional propeller thrusters use acceleration/deceleration ducts to increase their efficiency. However, unlike conventional propellers, it is impossible to apply to airfoil acceleration/deceleration ducts due to the RDP structure. In this study, duct wake flow characteristics, thrust force, and efficiency according to the duct shape of RDP were analyzed using numerical analysis techniques. Duct design is limited and six duct shapes were designed. As a result, an optimized duct shape was designed considering duct wake flow characteristics, thrust force, and efficiency. The shape that the outlet width of the RDP was kept constant until the end of the duct showed higher thrust force and efficiency.

Rapid construction delivery of COVID-19 special hospital: Case study on Wuhan Huoshenshan hospital

  • Wang, Chen;Yu, Liangcheng;Kassem, Mukhtar A.;Li, Heng;Wang, Ziming
    • Advances in Computational Design
    • /
    • v.7 no.4
    • /
    • pp.345-369
    • /
    • 2022
  • Infectious disease emergency hospitals are usually temporarily built during the pneumonia epidemic with higher requirements regarding diagnosis and treatment efficiency, hygiene and safety, and infection control.This study aims to identify how the Building Information Modeling (BIM) + Industrialized Building System (IBS) approach could rapidly deliver an infectious disease hospital and develop site epidemic spreading algorithms. Coronavirus-19 pneumonia construction site spreading algorithm model mind map and block diagram of the construction site epidemic spreading algorithm model were developed. BIM+IBS approach could maximize the repetition of reinforced components and reduce the number of particular components. Huoshenshan Hospital adopted IBS and BIM in the construction, which reduced the workload of on-site operations and avoided later rectification. BIM+IBS integrated information on building materials, building planning, building participants, and construction machinery, and realized construction visualization control and parametric design. The delivery of Huoshenshan Hospital was during the most critical period of the Coronavirus-19 pneumonia epidemic. The development of a construction site epidemic spreading algorithm provided theoretical and numerical support for prevention. The agent-based analysis on hospital evacuation observed "arched" congestion formed at the evacuation exit, indicating behavioral blindness caused by fear in emergencies.

The characteristics of the flow field around canvas kite using the CFD (CFD를 이용한 범포 주위의 유동장 특성)

  • Bae, Bong-Seong;Bae, Jae-Hyun;An, Heui-Chun;Park, Seong-Wook;Park, Chang-Doo;Jeong, Eui-Cheol
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.42 no.3
    • /
    • pp.169-178
    • /
    • 2006
  • This research aims at establishing the fundamental characteristics of the kite through the analysis of the flow field around various types of kites. The approach of this study were adopted for the analysis; visualization by CFD(computational fluid dynamics). Also, the lift/drag and PIV(particle image velocimetry) tests of kites had been performed in our previous finding. For this situation, models of canvas kite were designed by solidworks(design program) for the CFD test using the same conditions as in the lift/drag tests. And we utilized FloWorks as a CFD analysis program. The results obtained from the above approach are summarized as follows: According to comparison of the measured and analyzed results from mechanical tests, PIV and CFD test, the results of all test were similar. The numerical results of lift-coefficient and drag-coefficient were 5-20% less than those of the tests when attack angle is $10^{\circ},\;20^{\circ}\;and\;30^{\circ}$. In particular, it showed the 20% discrepancy at $40^{\circ}$. The numerical results of the ratio of drag and lift were 8-13% less than those of the tests at $10^{\circ}$ and 10% less than those of the tests at $20^{\circ},\;30^{\circ}\;and\;40^{\circ}$. Pressure distribution gradually became stable at $10^{\circ}$. In particular, the rectangular and triangular types had the centre of the high pressure field towards the leading edge and the inverted triangular type had it towards the trailing edge. The increase of the attack angle resulted in the eddy in order of the rectangular, triangular and inverted triangular type. The magnitude of the eddy followed the same order. The effect of edge-eddy was biggest in the triangular type followed by the rectangular and then the inverted triangular type. The action point of dynamic pressure as a function of the attack angle was close to the rear area of the model with the small attack angle, and with large attack angle, the action point was close to the front part of the model.