• Title/Summary/Keyword: Computational power

Search Result 1,954, Processing Time 0.024 seconds

A Study on the Uniform Mixing of Ammonia-Air with the Change of Ammonia Supply Device Shape in a De-NOx System (탈질설비에서 암모니아 혼합기의 형상에 따른 암모니아-공기 균일 혼합에 관한 연구)

  • Ha, Ji Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.3
    • /
    • pp.20-26
    • /
    • 2019
  • Selective catalytic reduction(SCR) method is widely used among various methods for reducing nitrogen oxides in combustion devices of coal power plant. In the present study, the computational fluid dynamic analysis was accomplished to derive the optimal shape of ammonia-dilution air mixing device in a ammonia injection grid. The distribution characteristics of flow and $NH_3$ concentration had been elucidated for the reference shape of ammonia mixing device(Case 1). In the mixing device of Case 1, it could be seen that $NH_3$ distribution was shifted to the wall opposite to the inlet of the ammonia injection pipe. For the improvement of $NH_3$ distribution, the case(Case 2) with closing one upper injection hole and 4 side injection holes, the case(Case 3) with installing horizontal plate at the upper of ammonia injection pipe, the case(Case 4) with installing horizontal plate and horizontal arc plate at he upper of ammonia injection pipe were investigated by analyzing flow and $NH_3$ concentration distributions. From the present study, it was found that the % RMS of $NH_3$ for Case 4 was 4.92%, which was the smallest value among four cases, and the range of $R_{NH3}$ also has the optimally uniform distribution, -10.82~8.34%.

A Study on the Performance Improvement of Software Digital Filter using GPU (GPU를 이용한 소프트웨어 디지털 필터의 성능개선에 관한 연구)

  • Yeom, Jae-Hwan;Oh, Se-Jin;Roh, Duk-Gyoo;Jung, Dong-Kyu;Hwang, Ju-Yeon;Oh, Chungsik;Kim, Hyo-Ryoung
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.4
    • /
    • pp.153-161
    • /
    • 2018
  • This paper describes the performance improvement of Software (SW) digital filter using GPU (Graphical Processing Unit). The previous developed SW digital filter has a problem that it operates on a CPU (Central Processing Unit) basis and has a slow speed. The GPU was introduced to filter the data of the EAVN (East Asian VLBI Network) observation to improve the operation speed and to process data with other stations through filtering, respectively. In order to enhance the computational speed of the SW digital filter, NVIDIA Titan V GPU board with built-in Tensor Core is used. The processing speed of about 0.78 (1Gbps, 16MHz BW, 16-IF) and 1.1 (2Gbps, 32MHz BW, 16-IF) times for the observing time was achieved by filtering the 95 second observation data of 2 Gbps (512 MHz BW, 1-IF), respectively. In addition, 2Gbps data is digitally filtered for the 1 and 2Gbps simultaneously observed with KVN (Korean VLBI Network), and compared with the 1Gbps, we obtained similar values such as cross power spectrum, phase, and SNR (Signal to Noise Ratio). As a result, the effectiveness of developed SW digital filter using GPU in this research was confirmed for utilizing the data processing and analysis. In the future, it is expected that the observation data will be able to be filtered in real time when the distributed processing optimization of source code for using multiple GPU boards.

Numerical Prediction of the Powering Performance of a Car-Ferry in Irregular Waves for Safe Return to Port(SRtP) (불규칙 파랑 중 카페리선의 SRtP 소요마력 수치 추정 연구)

  • Park, Il-Ryong;Kim, Je-in;Suh, Sung-Bu;Kim, Jin;Kim, Kwang-Soo;Kim, Yoo-Chul
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • This paper considers a numerical assessment of the self-propulsion performance of a damaged ferry carrying cars in irregular waves. Computational fluid dynamics(CFD) simulations were performed to see whether the ferry complied with the Safe Return to Port (SRtP) regulations of Lloyd's register, which require that damaged passenger ships should be able to return to port with a speed of 6 knots (3.09 m/s) in Beaufort 8 sea conditions. Two situations were considered for the damaged conditions, i.e., 1) the portside propeller was blocked but the engine room was not flooded and 2) the portside propeller was blocked and one engine room was flooded. The self-propulsion results for the car ferry in intact condition and in the damaged conditions were assessed as follows. First, we validated that the portside propeller was blocked in calm water based on the available experimental results provided by KRISO. The active thrust of starboard propeller with the portside propeller blocked was calculated in Beaufort 8 sea conditions, and the results were compared with the experimental results provided by MARIN, and there was reasonable agreement. The thrust provided by the propeller and the brake horsepower (BHP) with one engine room flooded were compared with the values when the engine room was not flooded. The numerical results were compared with the maximum thrust of the propeller and the maximum brake horse power of the engine to determine whether the damaged car ferry could attain a speed of 6 knots(3.09 m/s).

Field Applications of Non-powered Downward Water Circulation System to Improve Reservoir Water Quality (저수지 수질개선을 위한 무동력 하향류 수류순환시스템의 현장적용성)

  • Jang, YeoJu;Lim, HyunMan;Jung, JinHong;Park, JaeRho;Kim, WeonJae
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.2
    • /
    • pp.109-119
    • /
    • 2019
  • Eutrophication has occurred due to the inflow of various water pollutants in many Korean reservoirs with low depth, and algal blooms of surface layer and low oxygenation of deep layer have repeated every year. There are several existing technologies to alleviate the stratification of reservoirs, but it is difficult to apply them in field sites due to the necessity of electric power and low economic efficiency. In this study, a non-powered water circulation system using natural energy of wind and water flow has been developed, and two test-beds constructed in the reservoirs with different conditions and examined its field applicability. Through computational fluid dynamics (CFD) simulation, it has been shown that the water circulation system could induce the downward flow to mitigate the stratification between surface and deep layers, and its influence radius could reach about 30 m. As a result of long-term monitoring of the test-beds, various water quality improvement effects have been observed such as moderation of DO fluctuation by water circulation, reduction of DO supersaturation and prevention of excessive pH rising. In order to improve the applicability of the water circulation system, it is considered necessary to review countermeasures against flood and depth conditions of each reservoir.

Method of ChatBot Implementation Using Bot Framework (봇 프레임워크를 활용한 챗봇 구현 방안)

  • Kim, Ki-Young
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.1
    • /
    • pp.56-61
    • /
    • 2022
  • In this paper, we classify and present AI algorithms and natural language processing methods used in chatbots. A framework that can be used to implement a chatbot is also described. A chatbot is a system with a structure that interprets the input string by constructing the user interface in a conversational manner and selects an appropriate answer to the input string from the learned data and outputs it. However, training is required to generate an appropriate set of answers to a question and hardware with considerable computational power is required. Therefore, there is a limit to the practice of not only developing companies but also students learning AI development. Currently, chatbots are replacing the existing traditional tasks, and a practice course to understand and implement the system is required. RNN and Char-CNN are used to increase the accuracy of answering questions by learning unstructured data by applying technologies such as deep learning beyond the level of responding only to standardized data. In order to implement a chatbot, it is necessary to understand such a theory. In addition, the students presented examples of implementation of the entire system by utilizing the methods that can be used for coding education and the platform where existing developers and students can implement chatbots.

Lightweight Super-Resolution Network Based on Deep Learning using Information Distillation and Recursive Methods (정보 증류 및 재귀적인 방식을 이용한 심층 학습법 기반 경량화된 초해상도 네트워크)

  • Woo, Hee-Jo;Sim, Ji-Woo;Kim, Eung-Tae
    • Journal of Broadcast Engineering
    • /
    • v.27 no.3
    • /
    • pp.378-390
    • /
    • 2022
  • With the recent development of deep composite multiplication neural network learning, deep learning techniques applied to single-image super-resolution have shown good results, and the strong expression ability of deep networks has enabled complex nonlinear mapping between low-resolution and high-resolution images. However, there are limitations in applying it to real-time or low-power devices with increasing parameters and computational amounts due to excessive use of composite multiplication neural networks. This paper uses blocks that extract hierarchical characteristics little by little using information distillation and suggests the Recursive Distillation Super Resolution Network (RDSRN), a lightweight network that improves performance by making more accurate high frequency components through high frequency residual purification blocks. It was confirmed that the proposed network restores images of similar quality compared to RDN, restores images 3.5 times faster with about 32 times fewer parameters and about 10 times less computation, and produces 0.16 dB better performance with about 2.2 times less parameters and 1.8 times faster processing time than the existing lightweight network CARN.

Effectiveness of Beam-propagation-method Simulations for the Directional Coupling of Guided Modes Evaluated by Fabricating Silica Optical-waveguide Devices (광도파로 모드 간의 방향성 결합현상에 대한 빔 진행 기법 설계의 효율성 및 실리카 광도파로 소자 제작을 통한 평가)

  • Jin, Jinung;Chun, Kwon-Wook;Lee, Eun-Su;Oh, Min-Cheol
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.4
    • /
    • pp.137-145
    • /
    • 2022
  • A directional coupler device, one of the fundamental components of photonic integrated circuits, distributes optical power by evanescent field coupling between two adjacent optical waveguides. In this paper, the design process for manufacturing a directional coupler device is reviewed, and the accuracy of the design results, as seen from the characteristics of the actual fabricated device, is confirmed. When designing a directional coupler device through a two-dimensional (2D) beam-propagation-method (BPM) simulation, an optical structure is converted to a two-dimensional planar structure through the effective index method. After fabricating the directional coupler device array, the characteristics are measured. To supplement the 2D-BPM results that are different from the experimental results, a 3D-BPM simulation is performed. Although 3D-BPM simulation requires more computational resources, the simulation result is closer to the experimental results. Furthermore, the waveguide core refractive index used in 3D-BPM is adjusted to produce a simulation result consistent with the experimental results. The proposed design procedure enables accurate design of directional coupler devices, predicting the experimental results based on 3D-BPM.

A CFD Study on Aerodynamic Performances by Geometrical Configuration of Guide Vanes in a Denitrification Facility (탈질 설비 내 안내 깃의 기하학적 형상에 따른 공력 성능에 대한 전산 해석적 연구)

  • Chang-Sik, Lee;Min-Kyu, Kim;Byung-Hee, Ahn;Hee-Taeg, Chung
    • Clean Technology
    • /
    • v.28 no.4
    • /
    • pp.316-322
    • /
    • 2022
  • The flow pattern at the inlet of the catalyst layer in a selective catalytic reduction (SCR) system is one of the key parameters influencing the performance of the denitrification process. In the curved diffusing parts between the ammonia injection grids and the catalyst layers, guide vanes are installed to improve flow uniformity. In the present study, a numerical simulation has been performed to investigate the effect of the geometrical configuration of the guide vanes on the aerodynamic characteristics of a denitrification facility. This application has been made to the existing SCR process in a large-scaled coal-fired power plant. The flow domain to be solved covers the whole region of the flow passages from the exit of the ammonia injection gun to the exit of the catalyst layers. ANSYS-Fluent was used to calculate the three-dimensional steady viscous flow fields with the proper turbulence model fitted to the flow characteristics. The root mean square of velocity and the pressure drop inside the flow passages were chosen as the key performance parameters. Four types of guides vanes were proposed to improve the flow quality compared to the current configuration. The numerical results showed that the type 4 configuration was the most effective at improving the aerodynamic performance in terms of flow uniformity and pressure loss.

Sensitivity Analysis of Wake Diffusion Patterns in Mountainous Wind Farms according to Wake Model Characteristics on Computational Fluid Dynamics (전산유체역학 후류모델 특성에 따른 산악지형 풍력발전단지 후류확산 형태 민감도 분석)

  • Kim, Seong-Gyun;Ryu, Geon Hwa;Kim, Young-Gon;Moon, Chae-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.2
    • /
    • pp.265-278
    • /
    • 2022
  • The global energy paradigm is rapidly changing by centering on carbon neutrality, and wind energy is positioning itself as a leader in renewable energy-based power sources. The success of onshore and offshore wind energy projects focuses on securing the economic feasibility of the project, which depends on securing high-quality wind resources and optimal arrangement of wind turbines. In the process of constructing the wind farm, the optimal arrangement method of wind turbines considering the main wind direction is important, and this is related to minimizing the wake effect caused by the fluid passing through the structure located on the windward side. The accuracy of the predictability of the wake effect is determined by the wake model and modeling technique that can properly simulate it. Therefore, in this paper, using WindSim, a commercial CFD model, the wake diffusion pattern is analyzed through the sensitivity study of each wake model of the proposed onshore wind farm located in the mountainous complex terrain in South Korea, and it is intended to be used as basic research data for wind energy projects in complex terrain in the future.

Development of transient Monte Carlo in a fissile system with β-delayed emission from individual precursors using modified open source code OpenMC(TD)

  • J. Romero-Barrientos;F. Molina;J.I. Marquez Damian;M. Zambra;P. Aguilera;F. Lopez-Usquiano;S. Parra
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1593-1603
    • /
    • 2023
  • In deterministic and Monte Carlo transport codes, b-delayed emission is included using a group structure where all of the precursors are grouped together in 6 groups or families, but given the increase in computational power, nowadays there is no reason to keep this structure. Furthermore, there have been recent efforts to compile and evaluate all the available b-delayed neutron emission data and to measure new and improved data on individual precursors. In order to be able to perform a transient Monte Carlo simulation, data from individual precursors needs to be implemented in a transport code. This work is the first step towards the development of a tool to explore the effect of individual precursors in a fissile system. In concrete, individual precursor data is included by expanding the capabilities of the open source Monte Carlo code OpenMC. In the modified code - named Time Dependent OpenMC or OpenMC(TD)- time dependency related to β-delayed neutron emission was handled by using forced decay of precursors and combing of the particle population. The data for continuous energy neutron cross-sections was taken from JEFF-3.1.1 library. Regarding the data needed to include the individual precursors, cumulative yields were taken from JEFF-3.1.1 and delayed neutron emission probabilities and delayed neutron spectra were taken from ENDF-B/VIII.0. OpenMC(TD) was tested in a monoenergetic system, an energy dependent unmoderated system where the precursors were taken individually or in a group structure, and in a light-water moderated energy dependent system, using 6-groups, 50 and 40 individual precursors. Neutron flux as a function of time was obtained for each of the systems studied. These results show the potential of OpenMC(TD) as a tool to study the impact of individual precursor data on fissile systems, thus motivating further research to simulate more complex fissile systems.