• Title/Summary/Keyword: Computational flow analysis

Search Result 2,291, Processing Time 0.033 seconds

A Numerical Study on the Agglomeration of Algae by the Ultrasonic Wave (초음파를 이용한 미세조류 응집에 관한 수치해석 연구)

  • Ha, Ji Soo;Shim, Sung Hun;Jung, Sang Hyun
    • Journal of Energy Engineering
    • /
    • v.25 no.1
    • /
    • pp.23-28
    • /
    • 2016
  • In spite of various merit of algae as biofuel, the production cost of algae is a considerable obstacle for commercialization. The concurrent development of essential technologies is needed for the cultivating, harvesting, extracting and energy transformation. The production cost of algae biofuel has still higher than that of the other commercial biofuel. The major research activity has been focused on the cultivating and the research of other processes has been done with relatively lower activity. It is difficult to separate the algae from water because of the similar magnitude of density each other. The agglomeration and extracting of algae with the hybrid technology using ultrasonic wave is rare effect of environmental hazard and also it is appropriate technology for the next generation energy resources. The present research is investigated for the effective separation of algae from water with the ultrasonics wave. The aim of the present research is focused on the establishment of optimal design of algae agglomeration system. For this purpose, the computational fluid dynamic analysis has been conducted in the flow field with ultrasonic wave and algae flow to clarify the mechanism of algae separation by ultrasonic wave.

A thermal-flow analysis of deaerator floor of power plant for reducing the radiative heat transfer effect (발전소 Deaerator floor의 복사효과 저감을 위한 열유동 해석)

  • Kim, Tae-Kwon;Ha, Ji-Soo;Choi, Yong-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.476-481
    • /
    • 2016
  • Steam power generation is used to produce electricity through a generator that is connected to a steam turbine. As a result, the surface temperature of the deaerator is $70^{\circ}C$during the summer season, the surface temperature of the storage tank is $67^{\circ}C$, and the air temperature is $50^{\circ}C$. This environment is inappropriate for workers and instruments. Workers adjacent to the deaerator and storage tank in particular feel higher temperatures because of the radiative heat transfer effect. Therefore, we optimized the cooling conditions by computational analysis. Case 1 is the current shape of the power plant, Case 2 has additional insulation, and Case 3 has a radiation shield. Flow is caused by a temperature difference between the heat sources in the wall, and hot air is trapped in the right upper end. Based on the temperature contours and the maximum temperature of the surfaces, Case 2 was found to be the most efficient for reducing radiative heat transfer effects.

Computational Fluid Analysis for the Otter Boards - 3 . Efficiency Analysis of the Single Cambered Otter Boards for the Various Slot Position - (전개판에 대한 수직해법 - 3 . 슬롯에 따른 단순만곡형전개판의 성능분석 -)

  • 고관서
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.27 no.4
    • /
    • pp.278-285
    • /
    • 1991
  • The authors propose to use the slot system in order to improve of the efficiency for the cambered otter boards. The experiment is divided into 2 parts, one is the efficiency model test, and the other is the visualization model test. The hydrodynamic characteristics of the model otter boards were tested by efficiency model test to measure the shearing, drag force of the models and visualization test using hydrogen bubble method to observe the streak-line and time-line of flow around the models, and milk spout method to observe the separation zone in the wake behind the models. This study tested for 5 models such ad without slot, slot position 0.2C, 0.4C, 0.6C and 0.8C. The results obtained are as follows: \circled1 The maximum C sub(L) of model otter board with slot position 0.6C in attack angle 27$^{\circ}$ was the highest of all models, it's value was 1.59. \circled2 In general, the L/D ratio of the one slot otter boards were 16~28% higher than otter board without slot. \circled3 The slot position 0.6C was better than any other slot position, and it's conformed by visiualization. \circled4 As to the model otter board with slot position 0.6C, flow speed of the back side was faster 1.3 to 1.7 times than in the front side. \circled5 The size of the separated zone in case of the model otter board with 0.6C was smaller than that of any other models.

  • PDF

A Study on Aggregate Waste Separation Efficiency Using Adsorption System with Rotating Separation Net (회전분리망 흡착선별기의 순환 굵은골재 이물질 제거효율에 관한 연구)

  • Cho, Sungkwang;Kim, Gyuyong;Kim, Kyungwuk;Seon, Sangwon;Park, Jinyoung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.1
    • /
    • pp.85-91
    • /
    • 2021
  • Aggregate waste separator with rotating separating net was designed for applying classification process of construction waste. In order to evaluate the performance of the aggregate waste separator, according to the type of waste, standardized waste samples are prepared using acrylic. The appropriate operating point was evaluated by the classification efficiency and misclassification rate of recycled aggregate according to the control frequency of the blower operating and inlet position of the separating net. The classification efficiency at the operating point of the aggregate waste separator was evaluated through flow analysis assuming recycled aggregate and waste sample as particles. As a result of the performance test, when the distance. between the conveyor belt and the inlet was 0.2m, the classification efficiency was 95%, but the misclassification rate of recycled aggregate was 2% or more, which satisfies the classification efficiency and the misclassification rate of less than 2%. The operating point was shown at a control frequency of 58Hz at a suction distance of 0.254m. As a resu lt of flow analysis, there was no misclassification of recycled aggregate. In order to redu ce constru ction waste in the existing recycled aggregate production process, adsorption system using a rotating separating net that can be operated as an installation type was built.

Study on Three-Dimensional Analysis of Agricultural Plants and Drone-Spray Pesticide (농작물을 위한 드론 분무 농약 살포의 3차원 분석에 관한 연구)

  • Moon, In Sik;Kown, Hyun Jin;Kim, Mi Hyeon;Chang, Se Myong;Ra, In Ho;Kim, Heung Tae
    • Smart Media Journal
    • /
    • v.9 no.4
    • /
    • pp.176-186
    • /
    • 2020
  • The size and shape of crops are diverse, and the growing environment is also different. Therefore, when one uses a drone to spray pesticides, the characteristics of each crop must be considered, and flight conditions such as the flight height and forwarding velocity of the drone should be changed. The droplet flow of pesticides is affected by various flight conditions, and a large change occurs in the sprayed area. As a result, an uneven distribution of liquid may be formed at the wake, and the transport efficiency will be decreased as well as there would be a risk of toxic scatter. Therefore, this paper analyzes the degree of distribution of pesticides to the crops through numerical analysis when pesticide is sprayed onto the selected three crops with different characteristics by using agricultural drones with different flight conditions. On the purpose of establishing a guideline for spraying pesticides using a drone in accordance with the characteristics of crops, this paper compares the amount of pesticides distributed in the crops at the wake of nozzle flow using the figure of merit, and the sum of transported liquid rate divided by the root mean square of the probability density function.

Simulation analysis and evaluation of decontamination effect of different abrasive jet process parameters on radioactively contaminated metal

  • Lin Zhong;Jian Deng;Zhe-wen Zuo;Can-yu Huang;Bo Chen;Lin Lei;Ze-yong Lei;Jie-heng Lei;Mu Zhao;Yun-fei Hua
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.3940-3955
    • /
    • 2023
  • A new method of numerical simulating prediction and decontamination effect evaluation for abrasive jet decontamination to radioactively contaminated metal is proposed. Based on the Computational Fluid Dynamics and Discrete Element Model (CFD-DEM) coupled simulation model, the motion patterns and distribution of abrasives can be predicted, and the decontamination effect can be evaluated by image processing and recognition technology. The impact of three key parameters (impact distance, inlet pressure, abrasive mass flow rate) on the decontamination effect is revealed. Moreover, here are experiments of reliability verification to decontamination effect and numerical simulation methods that has been conducted. The results show that: 60Co and other homogeneous solid solution radioactive pollutants can be removed by abrasive jet, and the average removal rate of Co exceeds 80%. It is reliable for the proposed numerical simulation and evaluation method because of the well goodness of fit between predicted value and actual values: The predicted values and actual values of the abrasive distribution diameter are Ф57 and Ф55; the total coverage rate is 26.42% and 23.50%; the average impact velocity is 81.73 m/s and 78.00 m/s. Further analysis shows that the impact distance has a significant impact on the distribution of abrasive particles on the target surface, the coverage rate of the core area increases at first, and then decreases with the increase of the impact distance of the nozzle, which reach a maximum of 14.44% at 300 mm. It is recommended to set the impact distance around 300 mm, because at this time the core area coverage of the abrasive is the largest and the impact velocity is stable at the highest speed of 81.94 m/s. The impact of the nozzle inlet pressure on the decontamination effect mainly affects the impact kinetic energy of the abrasive and has little impact on the distribution. The greater the inlet pressure, the greater the impact kinetic energy, and the stronger the decontamination ability of the abrasive. But in return, the energy consumption is higher, too. For the decontamination of radioactively contaminated metals, it is recommended to set the inlet pressure of the nozzle at around 0.6 MPa. Because most of the Co elements can be removed under this pressure. Increasing the mass and flow of abrasives appropriately can enhance the decontamination effectiveness. The total mass of abrasives per unit decontamination area is suggested to be 50 g because the core area coverage rate of the abrasive is relatively large under this condition; and the nozzle wear extent is acceptable.

Simulation of Detailed Wind Flow over a Locally Heated Mountain Area Using a Computational Fluid Dynamics Model, CFD_NIMR_SNU - a fire case at Mt. Hwawang - (계산유체역학모형 CFD_NIMR_SNU를 이용한 국지적으로 가열된 산악지역의 상세 바람 흐름 모사 - 화왕산 산불 사례 -)

  • Koo, Hae-Jung;Choi, Young-Jean;Kim, Kyu-Rang;Byon, Jae-Young
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.4
    • /
    • pp.192-205
    • /
    • 2009
  • The unexpected wind over the Mt. Hwawang on 9 February 2009 was deadly when many spectators were watching a traditional event to burn dried grasses and the fire went out of control due to the wind. We analyzed the fatal wind based on wind flow simulations over a digitized complex terrain of the mountain with a localized heating area using a three dimensional computational fluid dynamics model, CFD_NIMR_SNU (Computational Fluid Dynamics_National Institute of Meteorological Research_Seoul National University). Three levels of fire intensity were simulated: no fire, $300^{\circ}C$ and $600^{\circ}C$ of surface temperature at the site on fire. The surface heat accelerated vertical wind speed by as much as $0.7\;m\;s^{-1}$ (for $300^{\circ}C$) and $1.1\;m\;s^{-1}$ (for $600^{\circ}C$) at the center of the fire. Turbulent kinetic energy was increased by the heat itself and by the increased mechanical force, which in turn was generated by the thermal convection. The heating together with the complex terrain and strong boundary wind induced the unexpected high wind conditions with turbulence at the mountain. The CFD_NIMR_SNU model provided valuable analysis data to understand the consequences of the fatal mountain fire. It is suggested that the place of fire was calm at the time of the fire setting due to the elevated terrain of the windward side. The suppression of wind was easily reversed when there was fire, which caused updraft of hot air by the fire and the strong boundary wind. The strong boundary wind in conjunction with the fire event caused the strong turbulence, resulting in many fire casualties. The model can be utilized in turbulence forecasting over a small area due to surface fire in conjunction with a mesoscale weather model to help fire prevention at the field.

Performance and structural analysis of a radial inflow turbine for the organic Rankine cycle (유기랭킨사이클용 반경류 터빈의 성능 및 구조 해석)

  • Kim, Do-Yeop;Kim, You-Taek
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.484-492
    • /
    • 2016
  • The turbine is an important component and has a significant impact on the thermodynamic efficiency of the organic Rankine cycle. A precise preliminary design is essential to developing efficient turbines. In addition, performance analysis and structural analysis are needed to evaluate the performance and structural safety. However, there are only a few exclusive studies on the development process of the radial inflow turbines for the organic Rankine cycle (ORC). In this study, a preliminary design of the ORC radial inflow turbine was performed. Subsequently, the performance and structural analysis were also carried out. The RTDM, which was developed as an in-house code, was used in the preliminary design process. The results of the performance analysis were found to be in good agreement with target performances. Structural analysis of the designed turbine was also carried out in order to determine whether the material selection for this study is suitable for the flow conditions of the designed turbine, and it was found that the selected aluminum alloy is suitable for the designed turbine. However, the reliability of the preliminary design algorithms and numerical methods should be strictly verified by an actual experimental test.

Design of a pilot-scale helium heating system to support the SI cycle (파이롯 규모 SI 공정 시험 설비에서의 헬륨 가열 장치 설계)

  • Jang, Se-Hyun;Choi, Yong-Suk;Lee, Ki-Young;Shin, Young-Joon;Lee, Tae-Hoon;Kim, Jong-Ho;Yoon, Seok-Hun;Choi, Jae-Hyuk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.157-164
    • /
    • 2016
  • In this study, researchers performed preliminary design and numerical analysis for a pilot-scale helium heating system intended to support full-scale construction for a sulfur-iodine (SI) cycle. The helium heat exchanger used a liquefied petroleum gas (LPG) combustor. Exhaust gas velocity at the heat exchanger outlet was approximately 40 m/s based on computational thermal and flow analysis. The maximum gas temperature was reached with six baffles in the design; lower gas temperatures were observed with four baffles. The amount of heat transfer was also higher with six baffles. Installation of additional baffles may reduce fuel costs because of the reduced LPG exhausted to the heat exchanger. However, additional baffles may also increase the pressure difference between the exchanger's inlet and outlet. Therefore, it is important to find the optimum number of baffles. Structural analysis, followed by thermal and flow analysis, indicated a 3.86 mm thermal expansion at the middle of the shell and tube type heat exchanger when both ends were supported. Structural analysis conditions included a helium flow rate of 3.729 mol/s and a helium outlet temperature of $910^{\circ}C$. An exhaust gas temperature of $1300^{\circ}C$ and an exhaust gas rate of 52 g/s were confirmed to achieve the helium outlet temperature of $910^{\circ}C$ with an exchanger inlet temperature of $135^{\circ}C$ in an LPG-fueled helium heating system.

Optimal arrangement of multiple wind turbines on an offshore wind-wave floating platform for reducing wake effects and maximizing annual energy production (다수 풍력터빈의 후류영향 최소화 및 연간발전량 극대화를 위한 부유식 파력-해상풍력 플랫폼 최적배치)

  • Kim, Jong-Hwa;Jung, Ji-Hyun;Kim, Bum-Suk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.209-215
    • /
    • 2017
  • A large floating offshore wind-wave hybrid power generation system with an area of 150 m2 and four 3 MW class wind turbine generators was installed at each column top. In accordance with the wind turbine arrangement, the wake generated from upstream turbines can adversely affect the power performance and load characteristics of downstream turbines. Therefore, an optimal arrangement design, obtained through a detailed flow analysis focusing on wake interference, is necessary. In this study, to determine the power characteristics and annual energy production (AEP) of individual wind turbines, transient computational fluid dynamics, considering wind velocity variation (8 m/s, 11.7 m/s, 19 m/s, and 25 m/s), was conducted under different platform conditions ($0^{\circ}$, $22.5^{\circ}$, and $45^{\circ}$). The AEP was calculated using a Rayleigh distribution, depending on the wind turbine arrangement. In addition, we suggested an optimal arrangement design to minimize wake losses, based on the AEP.