DOI QR코드

DOI QR Code

파이롯 규모 SI 공정 시험 설비에서의 헬륨 가열 장치 설계

Design of a pilot-scale helium heating system to support the SI cycle

  • Jang, Se-Hyun (Graduate school of Korea Maritime and Ocean University) ;
  • Choi, Yong-Suk (Division of Marine Engineering, Korea Maritime and Ocean University) ;
  • Lee, Ki-Young (Korea Atomic Energy Research Institute) ;
  • Shin, Young-Joon (Korea Atomic Energy Research Institute) ;
  • Lee, Tae-Hoon (Korea Atomic Energy Research Institute) ;
  • Kim, Jong-Ho (Division of Marine System Engineering, Korea Maritime and Ocean University) ;
  • Yoon, Seok-Hun (Division of Marine System Engineering, Korea Maritime and Ocean University) ;
  • Choi, Jae-Hyuk (Division of Marine System Engineering, Korea Maritime and Ocean University)
  • 투고 : 2016.02.16
  • 심사 : 2016.03.08
  • 발행 : 2016.03.31

초록

본 연구에서는 SI 공정 시스템에서 헬륨 가열 장치에 대한 설계와 건조 데이터 확보를 위한 파이롯 규모의 헬륨 가열 장치 시스템에 대한 예비 설계 및 해석을 수행하였다. 헬륨 가열기는 LPG연소로를 활용하도록 설계하였고, 열유동 해석을 수행한 결과, 열교환기 출구측에서 LPG 연소가스의 유속이 약 40 m/s가 되었다. 최대온도는 6개의 베플이 설치된 경우가 4개의 베플이 설치된 경우보다 높게 나타나며, 이는 6개의 베플일 때 연소가스에서 헬륨가스로의 열전달이 좋아질 것임을 의미한다. 더불어, 베플수가 많아지면 LPG 연소가스의 유량을 감소시킬 수 있어 연료비용을 저감할 수도 있음을 의미한다. 다만, 베플수를 무한정 증가시키면 입출구의 압력차가 증가되기 때문에 최적의 베플수 선정이 중요하다. 열유동 해석에 이어 수행한 구조해석에서는 헬륨의 유량을 3.729 mol/s, 출구 온도를 $910^{\circ}C$로 유지할 경우 관의 양 끝단에서 지지하는 경우 중간부분의 팽창률이 3.86 mm임을 확인하였다. LPG 연소로 헬륨 가열시스템에서 shell & tube type의 열교환기를 적용하여 $135^{\circ}C$의 헬륨이 $910^{\circ}C$로 가열하여 유출하기 위해서 약 $1300^{\circ}C$의 연소가스 온도 및 52 g/s의 연소가스 유량이 확보되어야 함을 확인하였다.

In this study, researchers performed preliminary design and numerical analysis for a pilot-scale helium heating system intended to support full-scale construction for a sulfur-iodine (SI) cycle. The helium heat exchanger used a liquefied petroleum gas (LPG) combustor. Exhaust gas velocity at the heat exchanger outlet was approximately 40 m/s based on computational thermal and flow analysis. The maximum gas temperature was reached with six baffles in the design; lower gas temperatures were observed with four baffles. The amount of heat transfer was also higher with six baffles. Installation of additional baffles may reduce fuel costs because of the reduced LPG exhausted to the heat exchanger. However, additional baffles may also increase the pressure difference between the exchanger's inlet and outlet. Therefore, it is important to find the optimum number of baffles. Structural analysis, followed by thermal and flow analysis, indicated a 3.86 mm thermal expansion at the middle of the shell and tube type heat exchanger when both ends were supported. Structural analysis conditions included a helium flow rate of 3.729 mol/s and a helium outlet temperature of $910^{\circ}C$. An exhaust gas temperature of $1300^{\circ}C$ and an exhaust gas rate of 52 g/s were confirmed to achieve the helium outlet temperature of $910^{\circ}C$ with an exchanger inlet temperature of $135^{\circ}C$ in an LPG-fueled helium heating system.

키워드

참고문헌

  1. G. Lazaro, G. Daniel, G. Carlos, G. Laura, and B. Carlos, "Efficiency of the Sulfur-Ionide thermochemical water splitting process for hydrogen production Based on ADS (Accelerator Driven System)," International Journal of Energy, vol. 57, pp. 469-477, 2013. https://doi.org/10.1016/j.energy.2013.05.042
  2. J. S. Choi, J. O. Mo, S. H. Yoon, J. H. Kim, and J. H. Choi, "A numerical study on thermal flow characteristics sulfuric acid solution fixed-quantity delivery pump of sulfur-ionide thermochemical cycle," Proceedings of the Korea Society of Marine Engineering Fall conference, pp. 273-274, 2012.
  3. Hindawi Publishing Corporation Conference Papers in Energy, Article ID 690627, p. 9, 2013.
  4. J. E. Funk and R. M. Reinstorm, "Energy requirements in the production of hydrogen from water," Industrial and Engineering Chemistry Process Design and Development, vol. 5, pp. 336-342, 1966. https://doi.org/10.1021/i260019a025
  5. K. Kunitomi and S. Shiozawa, "Safety design", Nuclear Engineering and Design, vol. 233, pp. 45-58, 2004. https://doi.org/10.1016/j.nucengdes.2004.07.010
  6. H. Sato, H. Ohashi, N. Sakaba, T. Nishihara, and K. Kunitomi, "Conceptual design of the HTTR-IS hydrogen production system-Assumed abnormal accidents caused by the IS process," Proceedings of the 15th International Conference on Nuclear Engineering, pp. 22-26, 2007.
  7. Y. J. Shin, J. W. Chang, J. H. Kim, K. Y. Lee, W. J. Lee, and J. H. Chang, "Development of a dynamic simulation code for a VHTR-aided SI process," Proceedings of the 4th International Topical Meeting on High Temperature Reactor Technology, HTR 2008, pp. 459-463, 2008.
  8. N. Sakaba, H. Sato, H. Ohashi, T. Nishihara, and K. Kunitomi, "Development scenario of the IS hydrogen production process to be coupled with VHTR system as a conventional chemical plant" Journal of Nuclear Sceience and Technology, vol. 45, no. 9, pp. 962-969, 2008. https://doi.org/10.1080/18811248.2008.9711497
  9. Y. J. Shin, J. W. Chang, T. H. Lee, and K. Y. Lee, Prelimnary Conceptual Design of Helium Loop Cooling System at Hydrogen Production Plant with VHTR-SI, Technical Report KAERI/TR-4474/2011, Korea Atomic Energy Research Institute, Korea, 2011.
  10. L. C. Brown, "Evolution of the Sulfur-Iodine flow sheet 1977-2007," AIChE Annual Conference Proceedings, pp. 1977-2007, 2007.
  11. M. G. Daniel, M. P. Lucia, W. G. Anne, and C. B. Kyle, "Stability of supported platinum sulfuric acid decomposition catalysts for use in thermochemical water splitting cycles," International Journal of Hydrogen Energy, vol. 32, no. 4, pp. 482-488, 2007. https://doi.org/10.1016/j.ijhydene.2006.06.053
  12. A. M. Banerjee, M. R. Pai, K. Bhattacharya, A. K. Tripathi, V. S. Kamble, S. R. Bharadwaj, and S. K. Kulshreshtha, "Catalytic decomposition of sulfuric acid on mixed Cr/Fe oxide samples and its application in sulfur-iodine cycle for hydrogen production," International Journal of Hydrogen Energy, vol. 33, no. 1, pp. 319-326, 2008. https://doi.org/10.1016/j.ijhydene.2007.07.017
  13. H. Sato, N. Sakaba, N. Sano, H. Ohashi, Y. Tachibana and K. Kunitomi, "Demonstration of nuclear hydrogen production utilizing the Japan's HTTR; Control scheme evaluation of the HTTR-IS nuclear hydrogen production system," Proceedings of the 4th Internation Topical Meeting on High Temperature Reactor Technology, HTR2008, pp. 481-490, 2008.
  14. Y. J. Shin, Design criteria and engineering scope of pilot stage(1Nm3 H2/h) SI test facility, Korea Atomic Energy Research Institute(KAERI), Design Specification, NHDD-HI-CA-13-001, 2014.
  15. H. R. Park, Performance Test of Finned-tube Heat Exchanger for Dehumidifying Application, M.S Thesis, Division of Mechanical Engineering, Kunsan University, Korea, 2000.