• Title/Summary/Keyword: Computational analysis modeling

Search Result 860, Processing Time 0.03 seconds

Peridynamic Modeling for Crack Propagation Analysis of Materials (페리다이나믹 이론 모델을 이용한 재료의 균열 진전 해석)

  • Chung, Won-Jun;Oterkus, Erkan;Lee, Jae-Myung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.2
    • /
    • pp.105-114
    • /
    • 2018
  • In this paper, the computer simulations are carried out by using the peridynamic theory model with various conditions including quasi-static loads, dynamic loads and crack propagation, branching crack pattern and isotropic materials, orthotropic materials. Three examples, a plate with a hole under quasi-static loading, a plate with a pre-existing crack under dynamic loading and a lamina with a pre-existing crack under quasi-static loading are analyzed by computational simulations. In order to simulate the quasi-static load, an adaptive dynamic relaxation technique is used. In the orthotropic material analysis, a homogenization method is used considering the strain energy density ratio between the classical continuum mechanics and the peridynamic. As a result, crack propagation and branching cracks are observed successfully and the direction and initiation of the crack are also captured within the peridynamic modeling. In case of applying peridynamic used homogenization method to a relatively complicated orthotropic material, it is also verified by comparing with experimental results.

Damage Detection of Bridge Structures Considering Uncertainty in Analysis Model (해석모델의 불확실성을 고려한 교량의 손상추정기법)

  • Lee Jong-Jae;Yun Chung-Bang
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.2 s.72
    • /
    • pp.125-138
    • /
    • 2006
  • The use of system identification approaches for damage detection has been expanded in recent years owing to the advancements in data acquisition system andinformation processing techniques. Soft computing techniques such as neural networks and genetic algorithm have been utilized increasingly for this end due to their excellent pattern recognition capability. In this study, damage detection of bridge structures using neural networks technique based on the modal properties is presented, which can effectively consider the modeling uncertainty in the analysis model from which the training patterns are to be generated. The differences or the ratios of the mode shape components between before and after damage are used as the input to the neural networks in this method, since they are found to be less sensitive to the modeling errors than the mode shapes themselves. Two numerical example analyses on a simple beam and a multi-girder bridge are presented to demonstrate the effectiveness and applicability of the proposed method.

Basic Investigation into the Validity of Thermal Analysis of 18650 Li-ion Battery Pack Using CFD Simulation (CFD 해석을 적용한 18650 리튬-이온 배터리 팩의 열 해석 신뢰도 기초 분석)

  • SIM, CHANG-HWI;KIM, HAN-SANG
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.5
    • /
    • pp.489-497
    • /
    • 2020
  • The Li-ion battery is considered to be one of the potential power sources for electric vehicles. In fact, the efficiency, reliability, and cycle life of Li-ion batteries are highly influenced by their thermal conditions. Therefore, a novel thermal management system is highly required to simultaneously achieve high performance and long life of the battery pack. Basically, thermal modeling is a key issue for the novel thermal management of Li-ion battery systems. In this paper, as a basic study for battery thermal modeling, temperature distributions inside the simple Li-ion battery pack (comprises of nine 18650 Li-ion batteries) under a 1C discharging condition were investigated using measurement and computational fluid dynamics (CFD) simulation approaches. The heat flux boundary conditions of battery cells for the CFD thermal analysis of battery pack were provided by the measurement of single battery cell temperature. The temperature distribution inside the battery pack were compared at six monitoring locations. Results show that the accurate estimation of heat flux at the surface of single cylindrical battery is paramount to the prediction of temperature distributions inside the Li-ion battery under various discharging conditions (C-rates). It is considered that the research approach for the estimation of temperature distribution used in this study can be used as a basic tool to understand the thermal behavior of Li-ion battery pack for the construction of effective battery thermal management systems.

Development of 3D CAD/CAE Interface in Initial Structural Design Phase of Shipbuilding (조선 기본구조설계 단계에서의 3D CAD/CAE 인터페이스 개발)

  • Son, Myeong-Jo;Lee, Jeong-Youl;Park, Ho Gyun;Kim, Jong-Oh;Woo, Jengjae;Lee, JoungHyun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.21 no.2
    • /
    • pp.186-195
    • /
    • 2016
  • The finite element modeling of a ship for hull structural analysis on the basis of new harmonized common structural rules (CSR-H) is to be extended to the cargo holds in fore and after body of a ship. Unlike the parallel middle-body where the external and internal features of hull are equal along to the longitudinal direction of a ship, in fore and after body, the external and internal features of hull vary linearly or even irregularly in forms of a surface or a curve along to the longitudinal direction of a ship. Thus, it needs lots of design man-hours for the modeling for structural analysis. In order to save man-hours in initial structural design phase of a ship, the specified 3D CAD system has been adopted in shipbuilding industry. Through the interface between CAD and CAE (rule scantling and direct strength assessment), design man-hour in initial design phase can be saved even under the environment of CSR-H.

A Study on CFD of Turbo fan and Fabrication of Turbo Fan with Honeycombs by PBF (터보 팬의 유동해석 및 허니콤 구조가 적용된 터보 팬의 PBF 3D 프린팅 제작에 관한 연구)

  • Jin, Chul-Kyu;Lee, Haesoo;Lee, Un-Gil;Woo, Jae-Hyeog
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.5
    • /
    • pp.899-908
    • /
    • 2022
  • In this study, a study was conducted to localize a large aluminum turbo fan used for tank powerpack. The turbo fan was scanned with a 3D scanner and then 3D modeling was performed. Computational fluid dynamics (CFD) were performed from the performance conditions of the fan, and structural analysis was performed using the pressure data obtained from CFD. The fan was reduced to 1/5 size by applying the geometric similarity. A 1/5 size fan has a honeycomb structure inserted into the front shroud and back shroud to reduce the weight by 5.3%. A 1/5 size fan was printed using a PBF 3D printer, and a 1/5 size fan with honeycombs was also printed. The pressure drop of 8.67 kPa and the required power of 138.19 kW, which satisfies the performance conditions of the fan, were confirmed from the results of CFD. The values of the maximum deformation amount of 0.000788 mm and the maximum effective stress of 0.241 MPa were confirmed from the structural analysis results. The fan printed by the PBF 3D printer had the same shape as the modeling, and the shape was perfect. There are no defects anywhere in appearance. However, the condition of the outer surface of the fan's back shroud is rough compared to other locations. The fan in which the honeycomb was inserted was also perfectly output, and the shape of the honeycomb was the same as the modeling.

A Study on Automation of Connection Design in Integrated System for Steel Structures (철골 구조설계 통할 시스템에서 접합부 설계 자동화에 관한 연구)

  • 김재동;천진호;이병해
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.397-404
    • /
    • 2000
  • The research of the computer-aided analysis and design of steel structures has continuously evolved. Despite the importance of connection in steel structures, the design process of connections is inefficient in present. The purpose of this study is to help engineer in connection design process. In this paper, prototype of automatic connection design module in integrated system for steel structures is proposed. The main methodology is based on bottom-up approach to simplify and formalize product model. Expert system is used to help engineer for selecting steel connection type. Object-oriented analysis and modeling will improve the expansion of knowledge-base. The design for connection was done according to the design specifications of connections of AISC

  • PDF

The application of geometrically exact shell element to NURBS generated by NLib (기하학적으로 정확한 쉘 요소의 NLib에 의해 생성된 NURBS 곡면에의 적용)

  • Choi Jin-Bok;Oh Hee-Yuel;Cho Maeng-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.301-308
    • /
    • 2005
  • In this study, we implement a framework that directly links a general tensor-based shell finite element to NURBS geometric modeling. Generally, in CAD system the surfaces are represented by B-splines or non-uniform rational B-spline(NURBS) blending functions and control points. Here, NURBS blending functions are composed by two parameters defined in local region. A general tensor-based shell element also has a two-parameter representation in the surfaces, and all the computations of geometric quantities can be performed in local surface patch. Naturally, B-spline surface or NURBS function could be directly linked to the shell analysis routine. In our study, we use NLib(NURBS libraray) to generate NURBS for shell finite analysis. The NURBS can be easily generated by interpolating or approximating given set of data points through NLib.

  • PDF

The energy dissipation mechanism of ship and fender system by vessel collision (선박충돌에 의한 선박과 방호공의 에너지 소산 메카니즘)

  • Hong Kwan-Young;Lee Gye-Hee;Ko Jae-Yong;Lee Seong-Lo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.696-703
    • /
    • 2005
  • Recently, the collision problems between a bridge and a navigating ship are frequently issued at the stage of structure design. Even the many study results about vessel to vessel collision are presented, but the collision studies between vessel and bridge structure have been hardly presented. In this study, nonlinear dynamic analysis of vessel and fender system carry out using ABAQUS/Explicit commercial program with consideration of some parameters, such as bow structure we composed to shell element also ship's hull is modeling to beam element. Also, buoyancy effect is considered as spring element. The two types of fender systems was comparable with both collision analysis about steel materials fender system and rubber fender system On the purpose of study is analyzed the plasticity dissipated energy of vessel and fender system. We blow characteristic that kinetic energy is disappeared by plastic large deformation in case of collision. Also, We considered dissipated kinetic energy considering friction effect.

  • PDF

The ship collision analysis of dolphin protection system (돌핀방호공의 선박충돌해석)

  • Lee Gye-Hee;Lee Seong-Lo;Go Jae-Yong;Yu Won-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.143-150
    • /
    • 2005
  • In this study, to evaluate the collision behaviors of the navigating vessel and the dolphin protective system protecting the substructures of bridges, the numerical simulation was performed. The analysis model of vessel bow that the plastic deformations are concentrated was composed by shell elements, and the main body of vessel was modeled by beam elements to represent the mass distribution and the change of potential energy. The material model reflecting the confining condition was used for the modeling of the filling soil of dolphin system. The surrounding soil of the dolphin system was modeled as nonlinear springs. As results, it is verified that the dolphin system can adequately dissipate the kinematic energy of the collision vessel. The surrounding soil of the dolphin system is able to resist the collision force of the vessel. And the major energy dissipation mechanism of collision energy is the plastic deformation of the vessel bow and the dolphin system.

  • PDF

An Experimental Study on the Vertical Vibration Transfer according to Shear Wall Building Structures due to Exciting Vibration Forces (전단벽식 건축구조물의 수직진동 전달특성에 관한 실험연구)

  • Chun Ho-Min
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.159-166
    • /
    • 2005
  • The vibration on building structures due to exciting vibration forces has been studied only for the vibration level on existing buildings. Recently, several researches have been performed on the prediction of vertical vibration on structures by using an analytical method. However, these studies have been focused on mainly the vibration analysis through analytical modeling of structures. This study aims to investigate the characteristics of vertical vibration transfer in terms of the directions of transfer(upward transfer and downward transfer) on the shear wall building structures due to 2 type vibration forces. In order to examine the characteristics of vertical vibration transfer, the mode analysis and the impact experiment were conducted several times on one building structure. The results of this study suggest that the characteristics of vertical vibration transfer are different in terms of the directions of transfer.

  • PDF