• 제목/요약/키워드: Computational Structure Dynamic

검색결과 543건 처리시간 0.024초

풍하중을 받는 구조물의 풍방향 동적응답해석 (Dynamic Alongwind Response of the Structure under the Wind Load)

  • 도혜경;권택진
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.451-458
    • /
    • 2001
  • The structural dynamic responses by wind load consist of alongwind, acrosswind and torsional behavior. Specially, dynamic alongwind response can be obtained from theoretical approach presented by Davenport, Vellozzi and Cohen. Generally the structural dynamic alongwind response can be obtained using the approximate analysis, under the condition that only the first mode shape of the structure is considered and the mode shape is assumed to be a linear function. In this paper, the dynamic alongwind responses are performed by using spectrum of longitudinal velocity fluctuations presented by Davenport and Kaimal, respectively.

  • PDF

노후 잔교식 부두의 동적구조 안전성 평가에 관한 연구 (Evaluation of Dynamic Structural Safety of Aged Finger Pier)

  • 이성우;이상호;지기환
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1993년도 봄 학술발표회논문집
    • /
    • pp.45-52
    • /
    • 1993
  • Evaluation of structural stability of aged wharf structure of pier type is of great importance for both safety and rehabilitation, Series of field dynamic experiments were performed for berthing impact and the results were used to calibrate analysis model. Through dynamic analysis for design, berthing impact safety of old wharf structure were evaluated. In this paper the procedure and results of experiments and analysis are presented.

  • PDF

Analysis of 3D wall building structures dynamic response

  • Chyzy, T.;Kretowska, J.;Miedzialowski, Cz.
    • Structural Engineering and Mechanics
    • /
    • 제22권1호
    • /
    • pp.33-52
    • /
    • 2006
  • Three-dimensional description of building structure taking into consideration soil-structure interaction is a very complex problem and solution of this problem is often obtained by using finite element method. However, this method takes a significant amount of computational time and memory. Therefore, an efficient computational model based on subdivision of the structure into building elements such as wall and floor slab elements, plane and three-dimensional joints and lintels, that could provide accurate results with significantly reduced computational time, is proposed in this study for the analysis three-dimensional structures subjected to dynamic load. The examples prove the efficiency and the computing possibilities of the model.

경계요소법을 이용한 구조물과 지반사이의 동적상호 작용 해석 전산 프로그램 : SSI2D/3D (Computer Program for the solution of the Soil-Structure-Interaction Problem using the Boundary Element Method : SSI2D/3D)

  • 허영
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1989년도 봄 학술발표회 논문집
    • /
    • pp.17-21
    • /
    • 1989
  • SSI2D/3D is a computer program to calculate dynamic stiffness matrix of the foundation for soil-structure-interaction problem in frequency demain. It is written in FORTRAN 77 and applicable to two or three dimensional situations. In this paper the program structure is summarized. Two examples aye shown to demonstrate the possibilities of the Boundary Element Method applied to dynamic problems in infinite domains.

  • PDF

원자력발전소 보호시스템 캐비넷의 내진검증 (Seismic Qualification of Plant Protection System Cabinet for Nuclear Power Plant)

  • 정명조;박근배;황원걸
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1992년도 가을 학술발표회 논문집
    • /
    • pp.148-155
    • /
    • 1992
  • A method to verify seismic qualification of the plant protection system cabinet for a nuclear power plant is presented. A finite element model of the cabinet is developed and correlated to the dynamic properties observed during in-situ vibration test of the actual structure. The results of the modal analysis provide insight into the fundamental dynamic properties of the structure. Techniques for verifying structural integrity and operability are exemplified by summarizing response spectrum and time history analyses of the structure.

  • PDF

Dynamic stress response in the nanocomposite concrete pipes with internal fluid under the ground motion load

  • Keshtegar, Behrooz;Tabatabaei, Javad;Kolahchi, Reza;Trung, Nguyen-Thoi
    • Advances in concrete construction
    • /
    • 제9권3호
    • /
    • pp.327-335
    • /
    • 2020
  • Concrete pipes are considered important structures playing integral role in spread of cities besides transportation of gas as well as oil for far distances. Further, concrete structures under seismic load, show behaviors which require to be investigated and improved. Therefore, present research concerns dynamic stress and strain alongside deflection assessment of a concrete pipe carrying water-based nanofluid subjected to seismic loads. This pipe placed in soil is modeled through spring as well as damper. Navier-Stokes equation is utilized in order to gain force created via fluid and, moreover, mixture rule is applied to regard the influences related to nanoparticles. So as to model the structure mathematically, higher order refined shear deformation theory is exercised and with respect to energy method, the motion equations are obtained eventually. The obtained motion equations will be solved with Galerkin and Newmark procedures and consequently, the concrete pipe's dynamic stress, strain as well as deflection can be evaluated. Further, various parameters containing volume percent of nanoparticles, internal fluid, soil foundation, damping and length to diameter proportion of the pipe and their influences upon dynamic stress and strain besides displacement will be analyzed. According to conclusions, increase in volume percent of nanoparticles leads to decrease in dynamic stress, strain as well as displacement of structure.

건물-지반 시스템에 관한 진동대실험 (2) : 성층지반위의 구조물 (Shaking table test on soil-structure interaction system (2) : Superstructure with foundation on layered soil)

  • Lee Sung-Kyung;Masato Motosaka;Min Kyung-Won
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.529-537
    • /
    • 2005
  • This paper proposes the shaking table testing method, without any soil specimen only using building model as an experimental part, considering dynamic soil-structure interaction based on the substructure method. The two-layered soil is assumed as a soil model of the entire soil-structure interaction syhstem(SSI) in this paper. Differently from the constant soil stiffness, the frequency-dependent dynamic soil stiffness is approximated for the case of both acceleration and velocity feedback, respectively. The interaction force is observed from measuring the accelerations at superstructure. Using the soil filters corresponding to the approximated dynamic soil stiffness, the shaking table drives the acceleration or velocity, which the needed motion to give the building specimen the SSI effects. Experimental results show the applicability the proposed methodologies to the shaking table test considering dynamic soil-structure interaction.

  • PDF

3차원 구조물의 동적응답 해석알고리즘에 관한 연구 (A Study on Dynamic Response Analysis Algorithm for Three Dimensional Structure)

  • 문덕홍;강현석;최명수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.637-642
    • /
    • 2000
  • This paper suggests new analysis algorithm for tile dynamic response of three dimensional structure which is frequently found in pipe line system of plant by the combination of the transfer stiffness coefficient method(TSCM) and Newmark method. Presented analysis algorithm for dynamic response can improve the computational accuracy remarkably owing to advantages of tile TSCM in comparison of transfer matrix method(TMM). Analysis system was modeled as a lumped mass system in this mettled. The analysis algorithm for dynamic response was formulated for the three dimensional structure. The validity of the this method is demonstrated through the results of numerical experiment for simple computational model by the TSCM and TMM.

  • PDF

개선된 콤포넌트 모드법을 이용한 거대구조물의 동적해석 (Dynamic analysis for complex structures using the improved component mode method)

  • 심재수;박명균
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1993년도 봄 학술발표회논문집
    • /
    • pp.37-44
    • /
    • 1993
  • There are a lot of linear dynamic analysis methods for complex structures. Each method has advantages and shortcomings. Method of dynamic analysis for complex structure is selected considering characteristics of dynamic loading, computer facility available number of degree of freedem and accuracy of results. It is a main point of view to get economical results rather then accurate ones for analysis of general complex structures, Mode superposition method and direct integration method are generally used. However, the characteristics of load is not considered in mode superpositon method, the personal computer cannot be used in direct integration methods. To over-come these shortcomings, the component mode method incorporating Ritz algorithm updated is proposed to solve economically dynamic behavior of the structures. The purpose of study is a formulation of algorithm, and computer programing suitable for dynamic analysis of the complex structure in personal computer environment.

  • PDF

연속 프리플렉스 합성형교의 내진해석에 관한 연구 (A Study on the Seismic Analysis of Continuous Preflex Composite Bridges)

  • 구민세;정재운;김훈희
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.241-248
    • /
    • 1999
  • Structural damage during an earthquake is caused by the response of the structure to the ground motion input at its base. The dynamic force produced in the structure are due to the inertia of its vibrating elements. The response of the structure exceeds the ground motion and this dynamic magnification depends on the duration and frequency content of the ground vibration, the soil properties at the site, distance from the epicenter and the dynamic characteristics of the structure. Earthquake load used in this study as a input data was artificially simulated with the design spectrum diagram in the Korean Earthquake Resistant Design Code. This paper presents the seismic analysis of the continuous preflex composite girder bridges according to variation of pier's height and span's length.

  • PDF