• Title/Summary/Keyword: Computational Reconstruction

Search Result 271, Processing Time 0.021 seconds

Block Sparse Signals Recovery via Block Backtracking-Based Matching Pursuit Method

  • Qi, Rui;Zhang, Yujie;Li, Hongwei
    • Journal of Information Processing Systems
    • /
    • v.13 no.2
    • /
    • pp.360-369
    • /
    • 2017
  • In this paper, a new iterative algorithm for reconstructing block sparse signals, called block backtracking-based adaptive orthogonal matching pursuit (BBAOMP) method, is proposed. Compared with existing methods, the BBAOMP method can bring some flexibility between computational complexity and reconstruction property by using the backtracking step. Another outstanding advantage of BBAOMP algorithm is that it can be done without another information of signal sparsity. Several experiments illustrate that the BBAOMP algorithm occupies certain superiority in terms of probability of exact reconstruction and running time.

Visualization of Multi-phase Flow with Electrical Impedance Tomography based on Extended Kalman Filter (확장 칼만 필터 기반 전기임피던스 단층촬영법을 이용한 다상유동장 가시화)

  • Lee, Jeong-Seong;Malik, Nauman Muhammad;Subramanian, Santhosh Kumar;Kim, Sin;Kim, Kyung-Youn
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.576-579
    • /
    • 2008
  • Electrical impedance(EIT) for the multi-phase flow visualization is an imaging modality in which the resistivity distribution of the unknown object is estimated based on the known sets of injected currents and measured voltages on the surface of the object. In this paper, an EIT reconstruction algorithm based on the extended Kalman filter(EKF) is proposed. The EIT reconstruction problem is formulated as a dynamic model which is composed of the state equation and the observation equation, and the unknown resistivity distribution is estimated recursively with the aid of the EKF. To verify the reconstruction performance of the proposed algorithm, experiments with simulated multi-phase flow are performed.

  • PDF

LONG TERM MONITORING OF HYDRARGYRUM POLLUTED SOIL USING PROJECTED IMAGE RECONSTRUCTION IN ELECTRICAL IMPEDANCE TOMOGRAPHY

  • Munkh-Erdne, Ts;Lee, Eunjung
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.18 no.2
    • /
    • pp.167-180
    • /
    • 2014
  • In this paper we consider a novel reconstruction method in electrical impedance tomography (EIT) and its application for monitoring and detecting a hydrargyrum (mercury) polluted soil near to the surface of underground. We use electrodes placed on the surface of land to collect the data which provides the relations of voltage and current map and to produce a projected image of interior conductivity distribution onto the surface of land. Here the projected image reconstruction method is used to monitor the pollution in soil underneath the ground without any destruction and any digging into a land.

Fast Linearized Bregman Method for Compressed Sensing

  • Yang, Zhenzhen;Yang, Zhen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.9
    • /
    • pp.2284-2298
    • /
    • 2013
  • In this paper, a fast and efficient signal reconstruction algorithm for solving the basis pursuit (BP) problem in compressed sensing (CS) is proposed. This fast linearized Bregman method (FLBM), which is inspired by the fast method of Beck et al., is based on the fact that the linearized Bregman method (LBM) is equivalent to a gradient descent method when applied to a certain formulation. The LBM requires $O(1/{\varepsilon})$ iterations to obtain an ${\varepsilon}$-optimal solution while the FLBM reduces this iteration complexity to $O(1/\sqrt{\varepsilon})$ and requiring almost the same computational effort on each iteration. Our experimental results show that the FLBM can be faster than some other existing signal reconstruction methods.

Fast EIT static image reconstruction using the recursive mesh grouping method (Mesh 그룹화 방법을 이용한 EIT 정적 영상 복원의 고속화)

  • 조경호;우응제;고성택
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.3
    • /
    • pp.63-73
    • /
    • 1997
  • For the practical applications of the EIT technology, it is essential to reconstruct sttic images iwth a higher spatial resolution in a reasonalble amount of processing time. Using the conventional EIT static image reconstruction algorithms, however, the processing time increases exponential with poor convergence characteristics as we try to get a higher spatial resolution. In order to overcome this problem, we developed a recursive mesh grouping method based on the Fuzzy-GA like algorithm. Computational simulation using the well-known improve dewton-raphson method with the proposed recursive mesh grouping algorithm shows a promising result that we can significantly reduce the processing time in the reconstruction of EIT static images of a higher spatial resolution.

  • PDF

A Two-Phase Approach of Progressive Mesh Reconstruction from Unorganized Point Clouds

  • Zhang, Hongxin;Liu, Hua;Hua, Wei;Bao, Hujun
    • International Journal of CAD/CAM
    • /
    • v.7 no.1
    • /
    • pp.103-112
    • /
    • 2007
  • This paper presents a practical approach for surface reconstruction from unoriented point clouds. Instead of estimating local surface orientation, we first generate a set of depth images from the input point clouds, and a coarse mesh is then generated based on them by space carving techniques. The resultant mesh is progressively refined by local mesh refinement and optimization according to surface distance measure. A manifold mesh approximating the input points within an given tolerance is finally obtained. Our approach is easy to implement, but has the ability to outputs high quality meshes in different resolutions. We show that the proposed approach is not sensitive to several types of data disfigurement and is able to reconstruct models robustly from variance input data.

AN EXPLICIT NUMERICAL ALGORITHM FOR SURFACE RECONSTRUCTION FROM UNORGANIZED POINTS USING GAUSSIAN FILTER

  • KIM, HYUNDONG;LEE, CHAEYOUNG;LEE, JAEHYUN;KIM, JAEYEON;YU, TAEYOUNG;CHUNG, GENE;KIM, JUNSEOK
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.23 no.1
    • /
    • pp.31-38
    • /
    • 2019
  • We present an explicit numerical algorithm for surface reconstruction from unorganized points using the Gaussian filter. We construct a surface from unorganized points and solve the modified heat equation coupled with a fidelity term which keeps the given points. We apply the operator splitting method. First, instead of solving the diffusion term, we use the Gaussian filter which has the effect of diffusion. Next, we solve the fidelity term by using the fully implicit scheme. To investigate the proposed algorithm, we perform computational experiments and observe good results.

Segment-based Foreground Extraction Dedicated to 3D Reconstruction (3차원 복원을 위한 세그멘트 기반의 전경물체 추출)

  • Kim, Jeong-Hwan;Park, An-Jin;Jeong, Gi-Cheol
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.625-630
    • /
    • 2009
  • Researches of image-based 3D reconstruction have recently produced a number of good results, but they assumed that the accurate foreground to be reconstructed is already extracted from each input image. This paper proposes a novel approach to extract more accurate foregrounds by iteratively performing foreground extraction and 3D reconstruction in a manner similar to an EM algorithm on regions segmented in an initial stage, called segments. Here, the segments should preserve foreground boundaries to compensate for the boundary errors generated by visual hull, simple 3D reconstruction to minimize the computational time, and should also be composed of the small number of sets to minimize the user input. Therefore, we utilize image segmentation using the graph-cuts method, which minimizes energy function composed of data and smoothness terms, and the two methods are iteratively performed until the energy function is optimized. In the experiments, more accurate results of the foreground, especially in boundaries, were obtained, although the proposed method used a simple 3D reconstruction method.

  • PDF

Three-Dimensional Reconselction using the Dense Correspondences from Sequence Images (연속된 영상으로부터 조밀한 대응점을 이용한 3차원 재구성)

  • Seo Yung-Ho;Kim Sang-Hoon;Choi Jong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.8C
    • /
    • pp.775-782
    • /
    • 2005
  • In case of 3D reconstruction from dense data in uncalibrated sequence images, we encounter with the problem for searching many correspondences and the computational costs. In this paper, we propose a key frame selection method from uncalibrated images and the effective 3D reconstruction method using the key frames. Namely, it can be performed on smaller number of views in the image sequence. We extract correspondences from selected key frames in image sequences. From the extracted correspondences, camera calibration process will be done. We use the edge image to fed dense correspondences between selected key frames. The method we propose to find dense correspondences can be used for recovering the 3D structure of the scene more efficiently.

A Comparative Study of Interface Reconstruction Algorithms in The Molten Metal Flow (주조유동 시뮬레이션에서 자유경계면 추적 기법 비교 연구)

  • Choi, Young-Sim;Hong, Jun-Ho;Hwang, Ho-Young
    • Journal of Korea Foundry Society
    • /
    • v.31 no.3
    • /
    • pp.124-129
    • /
    • 2011
  • We applied two numerical schemes to improve accuracy of the solution in the flow simulation of molten metal. One method is Piecewise Linear Interface Calculation (PLIC) method and the other is Donor-Acceptor (D-A) method. In the present work, we have tested simple problems to verify the module of the interface reconstruction algorithms. After validations, accuracy and efficiency of these two methods have compared by simulating various real products. On the numerical simulation of free surface flow, it is possible for PLIC method to track very accurately the interface between phases. PLIC method, however, has the weak point where a lot of computational time hangs, though it shows the more accurate interface reconstruction. Donor-Acceptor method has enough effectiveness in the macro observation of mold filling sequence though it shows the inferior accuracy.