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Abstract 
 

In this paper, a fast and efficient signal reconstruction algorithm for solving the basis pursuit 

(BP) problem in compressed sensing (CS) is proposed. This fast linearized Bregman method 

(FLBM), which is inspired by the fast method of Beck et al., is based on the fact that the 

linearized Bregman method (LBM) is equivalent to a gradient descent method when applied to 

a certain formulation. The LBM requires  1/O   iterations to obtain an  -optimal solution 

while the FLBM reduces this iteration complexity to  1/O  and requiring almost the same 

computational effort on each iteration. Our experimental results show that the FLBM can be 

faster than some other existing signal reconstruction methods. 
 

 

Keywords: Fast linearized Bregman method, linearized Bregman method, compressed 

sensing, basis pursuit, signal reconstruction  
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1. Introduction 

The idea of compressed sensing (CS) [1-5] goes against conventional wisdoms in data 

acquisition. CS asserts that one can recover signal which is sparse or compressible on certain 

basis from fewer non-adaptive, linear measurement than the traditional Nyquist method does, 

thus CS has the superiority in reducing computational and transmission cost, and has become 

an attractive method for signal processing. Since the development of the paradigm of CS, the 

basis pursuit (BP) problem [6] has become a topic of great interest.  

In CS, let
Nx be a vector signal, and it can be represented with an orthogonal 

basis  | 1,2, ,i i N Ψ ; that is, 

1

N

i i

i




 x ΨΘ                                                        (1) 

where ,i i  x denotes the sparse coefficients. The signal x has a K -sparse representation 

if 
0

KΘ (where
0

Θ denotes the number of nonzero entries ofΘ , and K N ), and x is 

a compressible signal if many coefficients in the vectorΘ are small and can be neglected 

without seriously degrading the signal.  

We measureΘ directly in order to overcome the problem of that we must know the 

formation ofΨ , and we can use a matrix
M NA  with M N which incoherent with the 

sparse basis, and get: 

y AΘ                                                                (2) 

where
My is the measurement, A is the measurement matrix. In this paper, the random 

Gaussian matrix is chosen as the measurement matrix A . 

The aim of a BP problem is to find a sparse vector
NΘ by solving the constrained 

minimization problem as follows. 

1
min       s.t.    
Θ

Θ y AΘ                                                (3) 

and then, the signal x can be reconstructed through the orthogonal basisΨ by the equation (1). 

The Bregman method is a simple but efficient method for solving the BP problem [7]. 

Moreover, Yin et al. in [8] also noted that the Bregman method is equivalent to the augmented 

Lagrangian method for solving the BP problem and has identical performance as the linear 

programming (LP)-based reconstruction method. Therefore, this method has received 

tremendous attention from researchers and engineers [7-12]. However， since there is 

generally no explicit expression for the solution of the Bregman method, the linearized 

Bregman method (LBM) was proposed by Yin et al. in [8]. This method was derived by 

linearizing the quadratic penalty term on each iteration of the Bregman method, and was futher 

analyzed in [9-10]. In order to overcome the problem of low convergence in LBM and achieve 

a faster convergence rate, Yin in [10]considered several techniques such as line search, BB 

step and L-BFGS, to accelerate the linearized Bregman method. A fast linearized Bregman 

iteration (FLBI) algorithm which added the “kicking” to the LBM was proposed in [11] by 

kicking the sparse vectorΘ to the critical point of the stagnation when detect thatΘ has been 
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staying unchanged for a while. Indeed, this kicking procedure is similar to line search 

commonly used in optimization problems and modifies the initial algorithm in no way but just 

accelerates the convergence rate [11]. Besides, an accelerated linearized Bregman method 

(ALBM) which derived from the Nesterov method and the LBM was proposed in [12] for the 

same purpose. The main difference between the ALBM and the LBM is that the latter uses the 

previous iterate and subgradient to compute the new iterate, while the ALBM uses 

extrapolations new iterate and subgradient that are computed as linear combinations of the two 

previous iterates and subgradients, respectively [12]. 

FLBI and ALBM achieve a faster convergence rate, yet both algorithms have some 

shortcomings. On the one hand, it is very hard to estimate the length of the stagnation and 

detect that whenΘ has been staying unchanged for the FLBI algorithm. Moreover, this 

method modifies the LBM algorithm in no way but just accelerates the convergence rate, thus 

it only has nearly identical performance as the LBM. On the other hand, since the convergence 

rate of the ALBM depends on the weighting parameters, it is necessary to choose an 

appropriate weighting parameters for this method, however, there is not a theoretically guide 

for choosing these weighting parameters up to now. For these reasons, a fast linearized 

Bregman method (FLBM), which is based on the fact that the linearized Bregman method 

(LBM) is equivalent to a gradient descent method applied to a certain formulation, is proposed 

to solve the BP problem, and achieves a faster convergence rate. The fast method introduced 

by Beck et al. in [13] has been studied and extended by others for nonsmooth minimization 

problems and variational inequalities, and not need to choose weighting parameters. Thus, we 

use this fast method to accelerate the convergence rate of the LBM.  

The rest of this paper is organized as follows. In Section 2, we propose the FLBM algorithm 

to reconstruct the sparse coefficients from the measurement. Section 3 presents extensive 

numerical results to evaluate the performance of the proposed reconstruction algorithm in 

comparison with some conventional algorithms. Finally, concluding remarks are provided in 

Section 4. 

2. Proposed Reconstruction Algorithm 

The BP problem (3) can be transformed into a linear problem, and then solved by a 

conventional linear programming method. However, such methods are not tailored for 

matrices A that are large scale and completely dense, which is the case of the random Gaussian 

measurement matrix in this paper. For this reason, here we propose the FLBM to solve the BP 

problem which has identical performance as the LP-based reconstruction method but running 

dramatically faster. 

In this section, we will introduce the Bregman and linearized Bregman method, and then 

present the fast linearized Bregman method for solving the BP problem. We will also analyze 

the complexity and the convergence of this algorithm. 

2.1 Bregman and Linearized Bregman Methods 

The Bregman method was proposed in [7] for solving the following constrained minimization 

problem. 

 min       s.t.    J 
Θ

Θ y AΘ                                              (4) 

where J is a convex function. 
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The Bregman distance [14] based on the convex function J between points u and v is 

defined as 

     , ,p

JD J J     u v u v u v p                                          (5) 

where  Jp v is a subgradient in the subdifferential of J at the point v . The Bregman 

method is defined in terms of the Bregman distance. 

To solve the problem (4), the Bregman method was given as follows: Given 0 0 u p 0 , 

we define 

 

 

2

1 2

T

1 1

1
arg min  D ,

2
k

k J k

k k k



 


  


   

p

Θ

Θ Θ Θ AΘ y

p p A AΘ y

                               (6) 

This method can be written as 

   

 

2

1 2

T

1 1

1
arg min  ,

2
k k k k

k k k

J J

 


       


   

Θ

Θ Θ Θ Θ Θ p AΘ y

p p A AΘ y

                 (7) 

   Since there is generally no explicit expression for the solution of (7), the linearized Bregman 

method was proposed in [8]. This method was generated by 

      

   

2
T

1
2

T

1 1 1

1
arg min  ,

2

1

k k k k k k

k k k k k

J J 






  


         


     


Θ

Θ Θ Θ Θ Θ p Θ Θ A AΘ y

p p Θ Θ A AΘ y

    

(8) 

The linearized Bregman algorithms return the solution to the problem (4) by solving the 

model 

 
2

2

1
min   +     s.t.    

2
J




Θ
Θ Θ y AΘ                                        (9) 

with an appropriate . This method is equivalent to the following formula [12] 

 

 

2

1 2

T

1 1

1
arg min

2
k k

k k k

J 




 


  


   

Θ

Θ Θ Θ v

v v A AΘ y

                                      (10) 

For the BP problem where  
1

J Θ Θ , we can get 

                                             
 

 

1

T

1 1

soft ,1k k

k k k



 




  

Θ v

v v A AΘ y
                                                        (11) 

where  soft ,z is the soft thresholding function 

                                   
   soft , sgn( ) max ,0  z z z

                                                  (12) 
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and 0  is a known constant andsgn( ) denotes the sign function. Besides, kv is an auxiliary 

variable 

1
k k k


 v p Θ                                                              (13) 

2.2 Fast Linearized Bergman Method 

Since the linearized Bregman method is equivalent to a gradient descent method applied to a 

certain formulation, we can accelerate the linearized Bregman method by techniques used to 

accelerate the classical gradient descent method. Here we consider the acceleration technique 

proposed by Beck et al. in [13]. This technique accelerates the classical gradient descent 

method in the sense that it reduces the iteration complexity significantly without increasing the 

per-iteration computational effort.  

In order to accelerate the convergence rate of the above iteration, the fast method of Beck et 

al. [13] is applied to solve this problem. In this method, Θ is updated as follows. 

 1 1 1

1

1k
k k k k

k

t

t
  



 
   

 
Θ Θ Θ Θ                                            (14) 

and 

 1 soft ,1k k Θ v                                                       (15) 

where

2

1

1 1 4

2

k

k

t
t 

 
 , 0 1t  and

1

1
[0,1]k

k

t

t 


 is the step length. 

For the constrained minimization problem (3), FLBM replaces the problem (11) by the 

following iterative scheme: 

 

 

 

1

1 1 1

1

T

1 1

soft ,1

1

k k

k
k k k k

k

k k k

t

t



  



 

 


 
    

 
   

Θ v

Θ Θ Θ Θ

v v A AΘ y

                                        (16) 

In summary, the FLBM algorithm consists of the following major steps: 

1) Initialization: Given starting points 0v , 0Θ , 0 1t  , and iteration index 0k  ; 

2) UpdateΘ :  1  = soft ,1k kΘ v ; 

3) Update t : 

2

1

1 1 4

2

k

k

t
t 

 
 ; 

4) UpdateΘ :  1 1 1

1

1k
k k k k

k

t

t
  



 
   

 
Θ Θ Θ Θ ; 

5) Update v :  T

1 1k k k   v v A AΘ y ; 



2289                                                                Yang et al.: Fast linearized Bregman Method for Compressed Sensing 

6) The iteration is terminated if the termination condition is satisfied; otherwise, 

set 1k k  and return to step 2). 

The computational complexity of the FCLALM algorithm on each iteration is dominated by 

step 2) and step 5), whose total cost is  O MN , which is the same as the LBM. This is 

because at iteration k , the computational complexity of steps 2) and 5) are both  O MN , the 

computational complexity of step 3) is  O N , and the computational complexity of step 4) 

is  1O only.  

This FLBM reduces the iteration complexity significantly without increasing the 

per-iteration computational effort. Moreover, the FLBM belongs to the classical LBM 

framework, this fast method modifies the LBM in no way but just accelerates the convergence 

rate. Hence, the convergence of the FLBM method is ensured due to the convergence of the 

LBM, which can be found in [12]. 

Next we will give iteration complexity bounds for both the LBM and the FLBM algorithms 

Theorem 1([12]) Let the sequence kΘ be generated by the linearized Bregman method, 

and  * *,Θ v  be the optimal solution of the BP Problem. Then for the 

function    
2

2

1
,

2
F J 


  Θ v Θ Θ v , we have 

   * * 1
, , =Ok kF F

k

 
  

 
Θ v Θ v                                        (17) 

Theorem 2 Let the sequence kΘ be generated by the fast linearized Bregman method, 

and  * *,Θ v be the optimal solution of the BP Problem. Then for the 

function    
2

2

1
,

2
F J 


  Θ v Θ Θ v , we have 

   * *

2

1
, , =Ok kF F

k

 
  

 
Θ v Θ v                                          (18) 

The proof is very similar to the proof of the Theorem 3.4 in [12], so we omit it. 

From the Theorem 1 and 2, we can easily get that the LBM requires  1/O  iterations to 

obtain an  -optimal solution while the FLBM reduces this iteration complexity 

to  1/O  on each iteration. 

3. Experimental Results and Analysis 

In this section, some experimental results are presented to evaluate the performance of the 

proposed FLBM. Firstly, the test image of size n n is arranged into a column vector of 

length
2N n . Then, this vector is divided into n frames of size n and we solve one frame at a 

time. The sampling rate of the test image is defined as 
m

r
n

 , where n is the frame size, 
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and m is the dimension of the measurement of each frame. 

The image can be represented with a sparse vector by an orthogonal basis. Many researches 

have been shown that images in the real world are known to have a sparse representation in the 

discrete wavelet transform (DWT) domain [15-17], so we choose the DWT basis as the sparse 

orthogonal basisΨ in this paper. 

We take stopping criterion as follows: 

32

2

10
k 



AΘ y

y
                                                    (19) 

Here, we take the three different groups of images for testing: Lena ( 256 256 ), Peppers 

( 256 256 ), and Man (512 512 ), and compare the FLBM reconstruction algorithm with 

ALBM, FLBI, LBM, BP algorithm [6] and OMP (Orthogonal Matching Pursuit) algorithm 

[18]. The proposed FLBM reconstruction algorithm is applied to these test images at the 

sampling rate 0.5r  . Experimental results on these test images, are shown in Figs. 1 , 2 and 3, 

respectively.  
 

      
(a) original image       (b) FLBM reconstruction  (c) ALBM reconstruction (d) FLBI reconstruction 

     
(e) LBM reconstruction      (f) BP reconstruction      (g) OMP reconstruction 

Fig. 1. Experimental results from different reconstruction algorithms for Lena image 

 

      
(a) original image       (b) FLBM reconstruction (c) ALBM reconstruction  (d) FLBI reconstruction 
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(e) LBM reconstruction       (f) BP reconstruction      (g) OMP reconstruction 

Fig. 2. Experimental results from different reconstruction algorithms for Peppers image 

 

       
(a) original image     (b) FLBM reconstruction   (c) ALBM reconstruction   (d) FLBI reconstruction 

     
(e) LBM reconstruction         (f) BP reconstruction   (g) OMP reconstruction 

Fig. 3. Experimental results from different reconstruction algorithms for Man image 

 

Fig. 1(a) is the original Lena image, Fig. 1(b), (c), (d), (e), (f)and (g) are the reconstructed 

Lena images obtained by the FLBM, ALBM, FLBI, LBM, BP and OMP, respectively. The 

images in Figs. 2 and 3 have similar situations. It is clear from Figs. 1-3 that the reconstructed 

images of our proposed FLBM have more detailed information and are much closer to the 

original image as compared with the OMP algorithm, and have similar detailed information 

compared with the ALBM, FLBI, LBM and BP algorithm. Besides, in all these figures, image 

(b) looks much smoother and clearer than (g). In short, the proposed reconstruction algorithm 

performs slightly better in human perception of global information, which can enhance the 

definition of the reconstructed images greatly.  

For easy observation, we can magnify the face regions of the reconstruction results with 

different algorithms for Lena image. The magnified face regions of the reconstruction results 

with different algorithms are shown in Fig. 4.  
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(a) FLBM reconstruction   (b) ALBM reconstruction   (c) FLBI reconstruction 

   
(d) LBM reconstruction         (e) BP reconstruction         (f) OMP reconstruction 

Fig. 4. Experimental results from different reconstruction algorithms for Lena’s face image 

 

It is clear from Fig. 4 that there are reconstruction artifacts and blurring effect in the OMP 

reconstruction image. The reconstruction results obtained by FLBM has slightly better 

appearances than ALBM, FLBI, LBM and BP, and has better appearances than OMP. We can 

see that the reconstruction result of the new algorithm can maintain salient features of the face 

in the original Lena image and has less noises and artificial effects on the face. 

To give the subjective quantitative results from the different reconstruction algorithms for 

these test images clearly, mean opinion score (MOS) method is used to measure the 

performance of  the these algorithms. MOS method produces the accurate results with small 

number of scores. It is generated by averaging the results of a set of standard, subjective test 

and act as an indicator for the perceived image quality. In this experiment, we use ten 

observers. The ten observers for determining MOS have normal or corrected to normal vision 

and were non-experts. The MOS of these different reconstruction algorithms for Lena, 

Peppers and Man images are shown in Table 1. 

 
Table 1. The MOS of different reconstruction algorithms for different test images 

Algorithms Test Images 

Lena Peppers Man 

FLBM 4.11 4.05 4.17 

ALBM 3.99 3.91 4.05 

FLBI 3.82 3.83 3.98 

LBM 3.78 3.82 3.92 

BP 4.16 4.09 4.21 

OMP 3.45 3.58 3.56 
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    It is clear from Table 1 that our proposed method has the best performance among all 

these test images for different reconstruction algorithms except BP algorithm at the sampling 

rate 0.5r  . 

For further comparison, two objective criteria, PSNR in dB and the run time in seconds, are 

used to measure the performance of  the proposed algorithm. 

The PSNR in dB of these methods to reconstruct Lena image at different sampling rates are 

listed in Table 2.  
Table 2. The PSNR (dB) for Lena image 

 

Algorithms 

sampling rate r  

0.1 0.2 0.3 0.4 0.5 

FLBM 31.606 32.183 32.831 33.542 34.453 

ALBM 31.584 32.175 32.746 33.489 34.391 

FLBI 31.565 32.164 32.791 33.456 34.395 

LBM 31.563 32.168 32.789 33.452 34.397 

BP 31.174 32.156 32.896 33.610 34.839 

OMP 28.939 29.085 30.143 31.108 32.357 

Table 2 gives the quantitative results of the FLBM, ALBM, FLBI, LBM, BP and OMP 

algorithms. It is clear that all of these methods provide very good performance. It is also 

obvious that, with increasing the sampling rate, the PSNR becomes higher for all the methods, 

that is, better quality reconstruction image can be obtained by taking more measurements.  

The run time in seconds required by these methods to reconstruct Lena image at different 

sampling rates is listed in Table 3. In general, with increasing sampling rate, the run time 

increases for all the methods. However, the FLBM is significantly superior to the LBM, BP 

and OMP algorithm, and is slightly superior to the ALBM and FLBI algorithm, for the same 

sampling rate. For example, for the Lena image, at the sampling rate 0.5r  , the LBM, BP 

and OMP require, respectively, 17.385 seconds, 43.452 seconds and 21.986 seconds, the 

ALBM and FLBI require, respectively, 6.125 seconds, and 6.987 seconds, for the test, while 

our FLBM takes only about 5.672 seconds. Therefore, the convergence rate of the FLBM 

algorithm is the fastest among all the methods in comparison. 
Table 3. The run time (sec) for Lena image 

 

Algorithms 

sampling rate r  

0.1 0.2 0.3 0.4 0.5 

FLBM 0.514 1.247 2.405 3.547 5.672 

ALBM 0.723 1.415 2.736 4.059 6.125 

FLBI 0.815 1.574 2.945 4.872 6.987 

LBM 1.376 2.564 4.963 8.876 17.385 

BP 32.031 37.640 35.078 39.217 43.452 

OMP 4.187 4.991 7.954 13.502 21.986 

To confirm the universality of the proposed FLBM algorithm, we apply it now to 

reconstruct the three different groups of the test images. The PSNR in dB of the reconstructed 

images and the required run time in seconds at different sampling rates resulting from the 

FLBM and ALBM algorithms are listed in Table 4. 

Table 4. The PSNR (dB) and run time (sec) of FLBM and ALBM for different test images 

Test 

Images 

Evaluation 

Measures 

Algorithms sampling rate r  

0.1 0.2 0.3 0.4 0.5 

 

Lena 

PSNR FLBM 31.606 32.183 32.831 33.542 34.453 

ALBM 31.584 32.175 32.746 33.489 34.391 

Run time FLBM 0.514 1.247 2.405 3.547 5.672 

ALBM 0.723 1.415 2.736 4.059 6.125 
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Peppers 

PSNR FLBM 32.801 33.432 33.959 34.676 35.593 

ALBM 32.752 33.336 33.878 34.625 35.511 

Run time FLBM 0.578 1.456 2.483 3.602 5.821 

ALBM 0.842 1.923 2.952 4.293 7.844 

 

Man 

PSNR FLBM 34.072 34.629 35.256 35.998 36.942 

ALBM 34.055 34.596 35.224 35.975 36.849 

Run time FLBM 1.637 4.157 8.603 18.351 32.165 

ALBM 2.571 5.236 9.975 20.693 38.645 

Clearly, our proposed method has the best performance and the fastest convergence rate 

among all these test images with different noise levels. 

Since the PSNR performance and the convergence rate depend on the sampling rate, it is 

necessary to choose an appropriate sampling rate for image reconstruction, and the sampling 

rate in the following test is set to 0.5 . To illustrate the FLBM robust to noise, a zero-mean 

Gaussian noise with variance
2 is added to the three different groups of the test images. 

The proposed FLBM reconstruction algorithm is applied to these test images with Gaussian 

noise of zero mean and variance
2 0.001  . Experimental results on these noisy images, are 

shown in Fig. 5, 6 and 7, respectively. 
 

       
(a) noisy image       (b) FLBM reconstruction  (c) ALBM reconstruction   (d) FLBI reconstruction 

      
(e) LBM reconstruction      (f) BP reconstruction       (g) OMP reconstruction 

Fig. 5. Experimental results from different reconstruction algorithms for noisy Lena image 

 

       
(a) noisy image        (b) FLBM reconstruction    (c) ALBM reconstruction    (d) FLBI reconstruction 
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(e) LBM reconstruction      (f) BP reconstruction      (g) OMP reconstruction 

Fig. 6. Experimental results from different reconstruction algorithms for noisy Peppers image 

 

       
(a) noisy image         (b) FLBM reconstruction   (c) ALBM reconstruction  (d) FLBI reconstruction 

     
(e) LBM reconstruction     (f) BP reconstruction     (g) OMP reconstruction 

Fig. 7. Experimental results from different reconstruction algorithms for noisy Man image 

 

Fig.5(a) is the noisy Lena image with Gaussian noise of zero mean and 

variance
2 0.001  , Fig. 5 (b), (c), (d), (e), (f) and (g) are the reconstructed Lena images 

obtained by the FLBM, ALBM, FLBI, LBM, BP and OMP, respectively. The images in Figs. 

6 and 7 have similar situations. For easy observation, we can magnify the face regions in Fig. 

5 of the reconstruction results with different methods. The reconstruction results obtained by 

FLBM and BP have slightly better appearances than ALBM, FLBI and LBM, and have better 

appearances than OMP. It is clear from Figs. 5-7 that the proposed reconstruction algorithm 

performs slightly better in human perception of global information, which can not only 

prevent from the emergence of stripes and noises effectively, but also enhance the definition of 

the reconstructed images greatly.  

To confirm the robustness of the proposed FLBM algorithm, the PSNR (dB) is used to 

measure the performance of the proposed algorithm for the noisy Lena image ( 256 256 ).  
Table 5. The PSNR (dB) for noisy Lena image 

 

Algorithms 
Variance

2  

0.001 0.005 0.01 0.05 0.1 

FLBM 32.043 28.037 25.962 19.837 17.706 

ALBM 32.032 28.016 25.693 19.715 17.655 

FLBI 32.028 27.914 25.537 19.096 17.169 
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LBM 32.025 27.912 25.536 19.098 17.162 

BP 30.886 26.153 23.561 17.672 15.376 

OMP 28.025 23.692 20.642 14.876 12.489 

Table 5 gives the PSNR of the reconstructed Lena image at different noise levels resulting 

from the FLBM, ALBM, FLBI, LBM, BP and OMP algorithms. In general, these algorithms 

provide very good performance. It is obvious that, with increasing the variance, the PSNR 

becomes lower for all the methods. Moreover, our proposed FLBM algorithm outperforms BP 

and OMP algorithm and slightly outperforms ALBM, FLBI and LBM in terms of the PSNR at 

the same noise levels.  

For further comparison, the PSNR in dB of the reconstructed different noisy images at 

different noise levels resulting from the FLBM and ALBM algorithms are listed in Table 6. 

 

Table 6. The PSNR (dB) of FLBM and ALBM for different noisy test images  

Test 

Images 

Algorithms Variance
2  

0.001 0.005 0.01 0.05 0.1 

 

Lena 

FLBM 32.043 28.037 25.962 19.837 17.706 

ALBM 32.032 28.016 25.693 19.715 17.655 

 

Peppers 

FLBM 32.834 28.523 26.022 20.089 17.964 

ALBM 32.758 28.316 25.745 19.821 17.680 

 

Man 

FLBM 33.823 29.764 27.025 20.137 18.652 

ALBM 33.326 29.325 26.736 19.956 18.461 

Clearly, our proposed method outperforms ALBM for all different noisy images with 

different noise levels. 

4. Conclusion 

In this paper, we have studied the CS-based signal reconstruction problem. An effective and 

fast algorithm, referred to as FLBM, has been proposed to reconstruct the sparse coefficients 

from the random measurement, thereby to reconstruct the signal. The LBM 

requires  1/O  iterations to obtain an  -optimal solution while the FLBM reduces this 

iteration complexity to  1/O  and requiring almost the same computational effort on each 

iteration. The experimental results have demonstrated that the novel FLBM gives a faster 

convergence rate than some other existing signal reconstruction methods do. 
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