• Title/Summary/Keyword: Computational Grid Computing

Search Result 131, Processing Time 0.03 seconds

CFD Analyses on Cactus PSE(Problem Solving Environment) (Cactus PSE의 활용을 통한 전산유체역학 문제 해석)

  • Ko S. H.;Cho K. W.;Na J.;Kim Y. G.;Song Y. D.;Kim C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.47-50
    • /
    • 2005
  • The Grid'[1] means the collaboration of computing and experimental resources in dispersed organizations by high-speed network. It has been paid much attention for an unlimited number of potential resources available and the easiness to build collaborative environments among multiple disciplines. However, the difficulty in establishing the environments and accessing and utilizing the resources has prevented application scientists from conducting Grid computing. Thus, the present study focuses on building PSE(Problem Solving Environment) which assists application researchers to easily access and utilize the Grid. The Cactus toolkit, originally developed by astrophysicists, is used as a base frame for Grid PSE. Some modules are newly developed and modified for CFD(Computational Fluid Dynamics) analysis. Simultaneously, a web portal, Grid-One portal, is built for remote monitoring/control and job migration. Cactus frame through the web portal service has been applied to various CFD problems, demonstrating that the developed PSE is valuable for large-scaled applications on the Grid.

  • PDF

A Study on the Grid Generation Technique (격자구성 기법에 관한 연구)

  • Yoon Yong Hyun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1996.05a
    • /
    • pp.118-124
    • /
    • 1996
  • When computing the flow around complex three dimensional configurations, the generation of the grid is the most time consuming. This paper presents a survey of the grid generation technique. The technique for treating problems arising in gird generation for complex geometries is addressed. A general procedure for generating boundary conforming grids is included

  • PDF

A Study on the Techniques of Grid Control for Numerical Grid Generation (격자 조절기법에 관한 연구)

  • Yoon Yong Hyun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.84-87
    • /
    • 2002
  • When computing the flow around complex three dimensional configurations, the generation of grid is the sunt time consuming part of any calculation. The object of this study is to develop the grid duster techniques capable of resolving complex flows with shock waves, expansion waves, shear layers, and cursive shapes, The Dot insert method of Non-Uniform Rational B-Splines is described as a id control method.

  • PDF

A Grid Web Portal for Aerospace

  • Lim Sang-Boem;Kim Joo-Bum;Kim Nam-Gyu;Lee June-H.;Kim Chong-Am;Kim Yoon-Hee
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.05a
    • /
    • pp.107-112
    • /
    • 2006
  • A wind tunnel simulation requires high-performance computing power like supercomputers and deep knowledge of this subject. Those requirements make win tunnel simulation difficult. Grid technology will make these difficulties simpler by providing easy to use grid web portal. By using grid web portal, scientist can execute simulation and access to high-performance computing power without any serious difficulties. In this paper will present a grid web portal for a wind tunnel simulation that is used in Aerospace area.

  • PDF

Design and Implementation of a Grid System META for Executing CFD Analysis Programs on Distributed Environment (분산 환경에서 CFD 분석 프로그램 수행을 위한 그리드 시스템 META 설계 및 구현)

  • Kang, Kyung-Woo;Woo, Gyun
    • The KIPS Transactions:PartA
    • /
    • v.13A no.6 s.103
    • /
    • pp.533-540
    • /
    • 2006
  • This paper describes the design and implementation of a grid system META (Metacomputing Environment using Test-run of Application) which facilitates the execution of a CFD (Computational Fluid Dynamics) analysis program on distributed environment. The grid system META allows the CFD program developers can access the computing resources distributed over the network just like one computer system. The research issues involved in the grid computing include fault-tolerance, computing resource selection, and user-interface design. In this paper, we exploits an automatic resource selection scheme for executing the parallel SPMD (Single Program Multiple Data) application written in MPI (Message Passing Interface). The proposed resource selection scheme is informed from the network latency time and the elapsed time of the kernel loop attained from test-run. The network latency time highly influences the executional performance when a parallel program is distributed and executed over several systems. The elapsed time of the kernel loop can be used as an estimator of the whole execution time of the CFD Program due to a common characteristic of CFD programs. The kernel loop consumes over 90% of the whole execution time of a CFD program.

A Relative Performance Index-based Job Migration in Grid Computing Environment (그리드 컴퓨팅 환경에서의 상대성능지수에 기반한 작업 이주)

  • Kim Young-Gyun;Oh Gil-Ho;Cho Kum Won;Ko Soon-Heum
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.11 no.4
    • /
    • pp.293-304
    • /
    • 2005
  • In this paper, we research on job migration in a grid computing environment with cactus and MPICH-C2 based on Globus. Our concepts are to perform job migration by finding the site with plenty of computational resources that would decrease execution time in a grid computing environment. The Migration Manager recovers the job from the checkpointing files and restarts the job on the migrated site. To select a migrating site, the proposed method considers system's performance index, cpu's load, network traffic to send migration job tiles and the execution time predicted on a migration site. Then it selects a site with maximal performance gains. By selecting a site with minimum migration time and minimum execution time. this approach implements a more efficient grid computing environment. The proposed method Is proved by effectively decreasing total execution time at the $K\ast{Grid}$.

DEVELOPMENT OF A THREE-DIMENSIONAL MULTI-BLOCK STRUCTURED GRID DEFORMATION CODE FOR COMPLEX CONFIGURATIONS (복잡한 형상에 관한 삼차원 변형 Multi-Block 정렬격자 프로그램 개발)

  • Hoang, A.D.;Lee, Y.M.;Jung, S.K.;Nguyen, A.T.;Myong, R.S.
    • Journal of computational fluids engineering
    • /
    • v.12 no.4
    • /
    • pp.28-37
    • /
    • 2007
  • In this study, a multi-block structured grid deformation code based on a hybrid of a transfinite interpolation algorithm and spring analogy was developed. The configuration was modeled by a Bezier surface. A combination of the spring analogy for block vertices and the transfinite interpolation for interior grid points helps to increase the robustness and makes it suitable for distributed computing. An elliptic smoothing operator was applied to the block faces with sub-faces in order to maintain the grid smoothness and skewness. The capability of this code was demonstrated on a range of simple and complex configurations including an airfoil and a wing-body configuration.

Medical Image Storage System based on Computational Grid (계산 그리드 기반 의료영상 저장시스템)

  • Ahn, Byoung-Kyu;Park, Jae-Hyun
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.10
    • /
    • pp.715-723
    • /
    • 2009
  • The use of medical imaging in hospitals is being gradually increased as it is of utmost importance in treatment and diagnosis of patients. With the drastic increase of the usage of medical imaging in hospitals per day necessitates more speedy and accurate systems for precise diagnosis and the treatment. Hence the modality and development of network infrastructure are also need to be improved day by day and this trend may be continued. Thus there is a great need improvement of PACS concerned. In this paper, by using the computational grid technology, we design a medical image storage system that improve the compression speed, and implement a prototype as a part of PACS. We also demonstrate the performance improvement from experimental results of the prototype.

User Process Resource Usage Measurement for Grid Accounting System

  • Hwang Ho Jeon;Kim Beob Kyun;Doo Gil Su;An Dong Un;Chung Seung Jong
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.608-611
    • /
    • 2004
  • Grid computing environment can be used to interconnect a wide variety of geographically distributed heterogeneous computing resources based on high-speed network. To make business service, it is necessary for Grid accounting system to measure the computational cost by consuming computer resources. To collect resource consumption data, and to keep track of process without needing to recompile kernel source, we use system call wrapping. By making use of this technique, we modifies system call table and replace existing system call to new system call that can monitor processes running in CPU kernel currently. Therefore we can measure user process resource usage for Grid accounting system.

  • PDF