User Process Resource Usage Measurement
for Grid Accounting System

HoJeon Hwang, BeobKyun Kim, GilSu Doo*, DongUn An, SeungJong Chung
Dept. of Computer Engineering, Chonbuk National University, Korea
Tel : +82-063-270-2412 Fax : +82-063-270-2394 E-mail: hjhwang@duan.chonbuk.ac. kr
*Dept. of Electrical & Electronic Engineering, Seonam University, Korea
Tel : +82-75-999-8765 Fax : +82-270-2394 E-mail: dgs@seonam.ac.kr

Abstract: Grid computing environment can be used to interconnect a wide variety of geographically distributed
heterogeneous computing resources based on high-speed network. To make business service, it is necessary for Grid
accounting system to measure the computational cost by consuming computer resources. To collect resource
consumption data, and to keep track of process without needing to recompile kernel source, we use system call
wrapping. By making use of this technique, we modifies system call table and replace existing system call to new
system call that can monitor processes running in CPU kernel currently. Therefore we can measure user process

resource usage for Grid accounting system.

Grid Accounting, Resource Usage, System Call Wrapping

1. INTRODUCTION AND MOTIVATION

Grid [1] emerging in the middle 1990°s began to solve
problems in the field of science and engineering under
distributed computing environment, but currently offer
opportunities to construct meta-computing
environment that enables to user to uniformly access
geographically distributed heterogeneous computing
resources, secondary storage systems, diverse research
devices and other shared resources via advanced
optical networks.

Grid offers a way to solve computational grand
challenge problems like protein folding, drug
discovery, financial modeling, earthquake simulation
and weather modeling that are not executed on
single machine. Also Grid is able to analyze and
organize scalable distributed data, and Grid enables to
allocate resource dynamically on demand of user level
and user’s job requirement.

When the Grid computing environment becomes fully
operational, many of Grid users will be actively using
Grid resources provided by supplier for their solving
problems. Multiple of suppliers will make idle
resources to be participated in the Grid that can be
utilized efficiently too, and charge accounting fee of
resource consumption to each of users accessing these
resources. Therefore Grid accounting system is
necessary to make Grid service business [2][3].

It is insufficient for Grid accounting system to charge
the cost of using only information provided by
accounting applications of UNIX-like operating
system. Our goal in this paper is to measure diverse
resource usage data at process-level. We use system
call wrapping technique so that we implement
monitoring component to collect resource
consumption data and to keep track of all processes.

608

2. RELATED WORK

Resource Usage Service Working Group(RUS-WG)

The framework of Grid Service Accounting
Extensions (GSAX) [8] proposed by RUS-WG within
GGF (Global Grid Forum) is composed of a number of
core blocks. These blocks are monitoring, metering
and accounting [8].

Monitoring block is to collect raw resource and service
data associated with a service call; to provide feedback
to the service on resource usage, and to control the
service based on feedback from higher-level blocks.
Metering block is to apply a charging policy to service
usage; and to request charging for service usage.
Accounting block is to manage a business relationship
between the consumer and service provider via an
accounting policy. Each of blocks can be combined in
various ways to provide different architectures,
suitable for various purposes.

Usage Record Working Group

Sites in the Grid must be able to exchange resource
usage data and basic accounting information in a
common format for resources to be shared. This
working group provides information to the Grid
community regarding the usage record format
requirempent. This working group focuses on the
representation of resource consumption data by
separating between basic field properties and meta
field properties. And specially defines necessary
common usage record fields. In this paper we have
incorporated the latest recommendation of a minimal
Usage Record from the UR-WG[6]

3. RESOURCE USAGE MEASUREMENT

3.1 Grid middleware

The Globus toolkit software {6][9] is one of the most
popular Grid middleware that offers resource
management, data management, and information
services independently. Globus is utilizing X.509
based authentication mechanisms to successfully
deploy a computational job across a set of
supercomputer systems. Grid resource provider sites
maintain a file that maps from X.509
DNs(Distinguished names) into a local account
identifier that was created for the individual user. Our
system was implemented based on Globus toolkit.

3.2 Local user to run job on a machine

The current situation at Grid sites is that to run jobs on
2 machine, the user needs to have a local account on
that machine[4][5]. Thomas J. Hacker [2] proposed the
mechanism that replaces the fundamental systems
paradigm of a strong binding between a real user and
an account on a system with the paradigm a temporary
binding between an account and a real user. UNIX
systems don’t support temporary account bindings.

When a certain job was submitted from authenticated
users, we did have one-to-one mapping between Grid
user’s DNs to local account for the duration of the job.
This approach benefits from the method that can
collect resource usage information of mapping user
account when a job is completed.

3.3 How to keep track of processes

As shown in figure 1, to keep track of process, we
specially try to use system call wrapping method,
which modifies system call table and replace existing
system call to new system call. A kernel module is a
piece of code that adds functionalities to the kernel
without needing to recompile or reboot the system.
Module can be dynamically loaded or unloaded with
the commands insmod and rmmod. You can have to be
root to load modules in the kernel so your system can't
be compromised because of modules. Modules are not
directly related to security but as they are executed in
the kernel space, they have full control the running
system. Therefore, modules can intercept system calls,
access all files and audit any process.

sys call_table[]

So, by wrapping system call using kernel module
programming mechanisms, system administrator can
audit all processes associated with a particular user as
well as measure resource usage data of Grid service
process. The resource consumption data can be
measured by checking return value from system call
function in kernel space. When function is completed
successfully, we record argument and return value of
this system call function. Also we refer to tesk
structure of process to obtain additional data as sho'wn
figure 2.

'

Accounting
(maintains business relationship)

:

Metering
(values service and requests charges)

v
Grid user— . .
Ser— Grid Service Process

v

Monitoring(collection of raw data)
—

[Monitoring kerne] module]
using system call wrapping m
|
1
[Original S'ystem call]
1

[Resource J

Figure 2. Monitoring kernel module

3.4 How to collect resource consumption data

Currently, process accounting application allows yau
to keep track of the accounting information about ea:h
process run on machine. Every time a process dies, the
exit program collects process resource consumption
data and writes it to the log file.

Unfortunately, it is not sufficient to do service
accounting information supported by operating systen.
To provide users with Grid accounting service,
accounting information for Grid service consist of rot
only computational resources usage data, but also
diverse hardware and software resources usage da‘a.
So our system can collect hardware resource
consumption data as well as determine whether there is
some applications execution or not as shown as shovn
table 1.

Table 1. Resource consumption data list

sys_no_syscall() | b audit_sys_exit(...) |

// resource usage measurement

sys_exit() ! cas

sys_fork() . sys_exit(...): // original system call
sys_read() !

sys_write() N audit_sys_read(...) |

P ret=sys_read(...); // original system call
if{ ret>0) // resource usage measurement

sys_no_syscall() }

Figure 1. System call wrapping module

user and group ID of process owner
Process process ID and command name B
accounting | process start time _'

information | memory used

CPU time used(user and system time,) |
10 standard input, output and error |
Accounting | amount of disk storage accessed B
information | amount of transfer data via socket J
Etc special applications J

609

Process Accounting Data

To collect process accounting information on a
machine that job runs, resource usage information used
by corresponding process was measured referring to
task process structure just before the exit of process.
We extract information about accounting from process
descriptor pointer of the currently executing process in
kernel mode when process exit. The pointer to the
process descriptor is obtained from current macro.

I/O Accounting Data

As shown in figure 3, the standard UNIX file system
allows VFS (Virtual File system) to uniform all file
system types, for example, regular file, socket, pipe,
and etc. The VFS offer user to access any file system
in common interface. Therefore, to determine which
file system was accessed, we audit read and write
system call that measure the amount of resource usage
data.

Note that file descriptor 0 is normally standard input, 1
is standard output and 2 is standard error output. In
other case, by tracking the inode structure of file
descriptor that is open by process currently running on
the system, we can identify the determination whether
some process access regular file or socket.

Systern call
(Common interfaces)

VFS(Virtual File System)

- N

Figure 3. UNIX files system and their interfaces

e

Special Applications

To determine which application is running which
process, we can compare special application name
with the file name of open file descriptor that referred
to the dentry structure of process file descriptor

4. IMPLEMENTATION AND RESULTS

When a Grid job was submitted by authenticated user,
to begin with local account and Grid user’s DN
correctly added to grid-mapfile in the maching where
the job was executed. We can remove mapping
information in grid-mapfile when a Grid job has been
finished.

To collect resource consumption data, system
administrator joad module in the kernel so make kernel
module to write all resource usage information
consumed by Grid user account for executing a Grid
service, into a specific log file as shown figure 4
Module can be dynamically loaded or unloaded with

610

the commands ‘insmod’ and ‘rmmod’. You can have to
be root to load modules in the kernel so your system
can't be compromised because of modules. Modules
are not directly related to security but as they are
executed in the kernel space, they have full control the
running system. Therefore, modules can intercept
system calls.

This system was implemented with the following
restrictions to measure Grid user process resource
usage.
1. Local accounts for Grid service can’t log in to the
machine at all.
2. This mapping is only one-to-one binding to
identify multiple Grid user service process

This system was experimented in ANSI C on a
Pentium installed Globus Toolkit 2.0 under Redhat
Linux server, kernel 2.4.2-2. Monitoring module
collect the only the Grid user process resource usage.
In the kernel space, our monitoring kernel module
check process owner and compare grid user’s id with
process owner’s id running in CPU currently. If user id
of process equals grid user id, then this monitoring
module save all collected resource usage data used by
corresponding process into the kernel memory and
write process usage field into the log file just before
the exit of user process.

Grid Service Process

e
%ﬂuser process?>

yes | 4———

Y .

A

intercept
—— gnsearch user ID record J

d save resource usage

Original System call
§vs_execvd (sys open} (sys_read]
{sys_exit] {sys_closel {sys write))

i

[Resource (hardware and software) }

" Process and [0 accounting data // application executed

GridID=2002 GrRdID=2001

GrouplD=501 fdID=
beginTime=20040412103421

PID=27124 foin/date

CommandName=demo

beginTime=20040417231218

memoryUsed=3484 Reference data

userTime=2 /iAccourt set for Grid User

systern Time=4 GridUser1 J

elapsed Time=7 GridUser?

standardlO=8 2462 4 - —

Amount of disk accessed=54326 Z"‘S;;r:be;x;;:cppllcauan fist

Amaunt of transfer data=0 foinddate

Figure 4. System overview and Grid job’s resource
usage example

Figure 4 shows that resource usage example that Grid
job process consumed. Monitoring kernel module
decides whether an application was executed or not
depending on execve system call of process. And the
mount of disk accessed and transferred data through
socket hooks read and write system call. And process
accounting data was referred to task_struct structure.

5. CONCLUSION AND FUTURE WORK

Resource owner provides the idle resources in the Grid
computing environment; resource consumer can obtain
the powerful computing service anytime and anywhere
using Grid service [1][6]. In order to make Grid
business service, we provide a mechanism to measure
the account of the amount that the consumer used and
the resource owner supported. This method is system
call wrapping.

There are many of characteristics associated with Grid
accounting information system in our goal. Their
characteristics are as follows:
1. Powerful auditing and monitoring capabilities per
process.
2. Collecting diverse resource consumption data.
3. Providing collected data to higher-level blocks.

This method of wrapping system call is of benefit to
collect resource usage data used by Grid service
process, but because of auditing all processes and
comparing all file descriptor structure in the kernel
space during measurement operation; this will cause
system performance decrease. For future work,
investigation of not checking all processes but trace
the only single process that deal with Grid service
should be done. And payment mechanism to meter
each of resources value should be attempted.

Reference

(1]

(2]

(3]

(4]

[5]

(71

(8]
(9]

I. Foster and C. Kesselman, “The Grid : Blueprint
for a New Computing Infrastructure”, Morgan
Kaufmann Publishers, USA, 1999

Thomas J. Hacker, Brain D. Athey, Q16
“Accounting Allocations on the Grid”, Center for
Parallel Computing University of Michigan, 20(0.

A. Beardsmore et al, “GSAX(Grid Servce
Accounting Extensions)”, draft, GGF6, 2002.

Rodney Mach, “Accounting Interchange Natural
Language Description(Requirements)”, Usz ge
Record Working Group, April-04-2004.

Thomas J. Hacker and Brain D. Athey. ‘A
methodology for account management in grid
computing environments”, In Craig A. Lze,
editor, Proceedings of Grid Computing GRID
2001, Second International Workshop, Denver,
CO, USA, November 12, 2001, volume 2242 of
Lecture Notes in Computer Science, pages 1.3~
144. Springer, 2001.

I Foster, et al, “Globus: A Metacormputing
Infrastructure Toolkit”, Intl. J. Supercomputer
Applications, 1997.

Auditing and Accounting on AIX SG24-6020-00
Redbook, published October-24-2000.

Global Grid Forum, http://www.ggf org
Globus Toolkit, http://www.globus.org

611

