• Title/Summary/Keyword: Computation cost

Search Result 647, Processing Time 0.028 seconds

Vibration Analysis of Structures Using the Transfer Stiffness Coefficient Method and the Substructure Synthesis Method (전달강성계수법과 부분구조합성법을 이용한 구조물의 진동해석)

  • Choi, Myung-Soo
    • Journal of Power System Engineering
    • /
    • v.5 no.4
    • /
    • pp.24-30
    • /
    • 2001
  • The substructure synthesis method(SSM) is developed for overcoming disadvantages of the Finite Element Method(FEM). The concept of the SSM is as follows. After dividing a whole structure into several substructures, every substructures are analyzed by the FEM or experiment. The whole structure is analyzed by using connecting condition and the results of substructures. The concept of the transfer stiffness coefficient method(TSCM) is based on the transfer of the nodal stiffness coefficients which are related to force vectors and displacement vectors at each node of analytical mode1. The superiority of the TSCM to the FEM in the computation accuracy, cost and convenience was confirmed by the numerical computation results. In this paper, the author suggests an efficient vibration analysis method of structures by using the TSCM and the SSM. The trust and the validity of the present method is demonstrated through the numerical results for computation models.

  • PDF

Design of Spatial Clustering Method for Data Mining of Various Spatial Objects (다양한 공간객체의 데이터 마이닝을 위한 공간 클러스터링 기법의 설계)

  • 문상호;최진오;김진덕
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.4
    • /
    • pp.955-959
    • /
    • 2004
  • Existing Clustering Methods for spatial data mining process only Point objects, not spatial objects with polygonometry such as lines and areas. It is because that distance computation between objects with polygonometry for clustering is more complex than distance computation between point objects. To solve this problem, we design a clustering method based on regular grid cell structures. In details, it reduces cost and time for distance computation using cell relationships in grid cell structures.

RFID Based Indoor Positioning System Using Event Filtering

  • Bok, Kyoungsoo;Yoo, Jaesoo
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.335-345
    • /
    • 2017
  • Recently, location systems using RFID technology have been studied in indoor environments. However, the existing techniques require high computational cost to compute the location of a moving object because they compare the location proximity of all reference tags and objects. In this paper, we propose an RFID based location positioning scheme using event filtering, which reduces the computation cost of calculating the locations of moving objects while maintaining the accuracy of location estimation. In addition, we propose an incremental location update policy to reduce the location update cost for moving objects. We also compare the proposed scheme with one of the localization schemes, LANDMARC using a performance evaluation. As a result, the proposed scheme outperforms LANDMARC in terms of the computational cost of location estimation. The proposed scheme also reduces the cost of location update by using the RFID-based update policy.

Application of Adaptive Evolutionary Algorithm to Economic Load Dispatch with Nonconvex Cost Functions (NonConvex 비용함수를 가진 전력경제급전 문제에 적응진화 알고리즘의 적용)

  • Mun, Gyeong-Jun;Hwang, Gi-Hyeon;Park, Jun-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.11
    • /
    • pp.520-527
    • /
    • 2001
  • This paper suggests a new methodology of evolutionary computations - an Adaptive Evolutionary Algorithm (AEA) for solving the Economic Load Dispatch (ELD) problem which has piecewise quadratic cost functions and prohibited operating zones with many local minima. AEA uses a genetic algorithm (GA) and an evolution strategy (ES) in an adaptive manner in order to take merits of two different evolutionary computations: global search capability of GA and local search capability of ES. In the reproduction procedure, proportions of the population by GA and the population by ES are adaptively modulated according to the fitness. Case studies illustrate the superiority of the proposed methods to existing conventional methods in power generation cost and computation time. The results demonstrate that the AEA can be applied successfully in the solution of ELD with piecewise quadratic cost functions and prohibited operating zones

  • PDF

Comparative Analysis of Cost Aggregation Algorithms in Stereo Vision (스테레오 비전에서 비용 축적 알고리즘의 비교 분석)

  • Lee, Yong-Hwan;Kim, Youngseop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.1
    • /
    • pp.47-51
    • /
    • 2016
  • Human visual system infers 3D vision through stereo disparity in the stereoscopic images, and stereo visioning are recently being used in consumer electronics which has resulted in much research in the application field. Basically, stereo vision system consists of four processes, which are cost computation, cost aggregation, disparity calculation, and disparity refinement. In this paper, we present and evaluate the existing various methods, focusing on cost aggregation for stereo vision system to comparatively analyze the performance of their algorithms for a given set of resources. Experiments show that Normalized Cross Correlation and Zero-Mean Normalized Cross Correlation provide higher accuracy, however they are computationally heavy for embedded system in the real time systems. Sum of Absolute Difference and Sum of Squared Difference are more suitable selection for embedded system, but they should be required on improvement to apply to the real world system.

A Vehicle Routing Problem in the Vendor Managed Inventory System (공급자 재고 관리 환경하의 차량 경로 문제)

  • Yang, Byoung-Hak
    • Journal of the Korea Safety Management & Science
    • /
    • v.10 no.3
    • /
    • pp.217-225
    • /
    • 2008
  • The inventory routing problem (IRP) is an important area of Supply Chain Management. The objective function of IRP is the sum of transportation cost and inventory cost. We propose an Artificial Immune System(AIS) to solve the IRP. AIS is one of natural computing algorithm. An hyper mutation and an vaccine operator are introduced in our research. Computation results show that the hyper mutation is useful to improve the solution quality and the vaccine is useful to reduce the calculation time.

An Analytic Algotithm to Estimate Expected Generation and Marginal Costs (발전 및 한계비용의 해석적 추정법에 관한 연구)

  • 박영문;서보혁
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.31 no.7
    • /
    • pp.1-10
    • /
    • 1982
  • This paper derives the algorithm to estimate the operating cost, its marginal cost, and the reliability indices for the long term planning of power system. Treating the load duration curve and the system in the stochastic sense takes the place of the inverted load duration curve, effective load duration curve, and the numerical integration in the conventional methods. The time and accuracy of computation are substantially improved due to the fact that all expressions are represented by simple analytic form instead of the existing recursive form.

  • PDF

A Comparative Study on the Traditional Depreciation Method and Depreciation on Current Cost Basis Method (전통적(傳統的) 감가상각방법(減價償却方法)과 시가상각방법(時價償却方法)에 대한 비판적(批判的) 연구(硏究) - Inflation 시(時)를 중심(中心)으로 -)

  • Park, Kyung-Rak
    • Korean Business Review
    • /
    • v.3
    • /
    • pp.183-210
    • /
    • 1990
  • In this study traditional depreciation method has been analysed carefully and then compared with the depreciation on current cost basis for the purpose of reviewing the basic theory underlying depreciation on current cost basis in view of the current situation demanding new method of depreciation. In this treatise the inevitability of rejecting the basic theory of depreciation and traditional depreciation method has been treated. Furthermore the probable consequence when such refutation of traditional depreciation occurs is studied. How to resolve such problems and what is the basis for claiming for depreciation on current cost basis have been also analysed. Through this analysis and research the following conclusions have been drawn: 1. For the purpose of complete recovery of invested capital depreciation on current cost basis is demanded. 2. For the purpose of undertaking realistic profit computation and accounting to apply to comparison and analysis of business operation depreciation on current cost basis is required. 3. When the feasibility of depreciation on current cost basis is guaranteed' then depreciation on current cost basis can be promoted. 4. Depreciation on current cost basis should be studied from the standpoint of evaluation position.

  • PDF

An Iterative Algorithm for the Bottom Up Computation of the Data Cube using MapReduce (맵리듀스를 이용한 데이터 큐브의 상향식 계산을 위한 반복적 알고리즘)

  • Lee, Suan;Jo, Sunhwa;Kim, Jinho
    • Journal of Information Technology and Architecture
    • /
    • v.9 no.4
    • /
    • pp.455-464
    • /
    • 2012
  • Due to the recent data explosion, methods which can meet the requirement of large data analysis has been studying. This paper proposes MRIterativeBUC algorithm which enables efficient computation of large data cube by distributed parallel processing with MapReduce framework. MRIterativeBUC algorithm is developed for efficient iterative operation of the BUC method with MapReduce, and overcomes the limitations about the storage size and processing ability caused by large data cube computation. It employs the idea from the iceberg cube which computes only the interesting aspect of analysts and the distributed parallel process of cube computation by partitioning and sorting. Thus, it reduces data emission so that it can reduce network overload, processing amount on each node, and eventually the cube computation cost. The bottom-up cube computation and iterative algorithm using MapReduce, proposed in this paper, can be expanded in various way, and will make full use of many applications.

Pre-Computation Based Selective Probing (PCSP) Scheme for Distributed Quality of Service (QoS) Routing with Imprecise State Information

  • Lee Won-Ick;Lee Byeong-Gi
    • Journal of Communications and Networks
    • /
    • v.8 no.1
    • /
    • pp.70-84
    • /
    • 2006
  • We propose a new distributed QoS routing scheme called pre-computation based selective probing (PCSP). The PCSP scheme is designed to provide an exact solution to the constrained optimization problem with moderate overhead, considering the practical environment where the state information available for the routing decision is not exact. It does not limit the number of probe messages, instead, employs a qualitative (or conditional) selective probing approach. It considers both the cost and QoS metrics of the least-cost and the best-QoS paths to calculate the end-to-end cost of the found feasible paths and find QoS-satisfying least-cost paths. It defines strict probing condition that excludes not only the non-feasible paths but also the non-optimal paths. It additionally pre-computes the QoS variation taking into account the impreciseness of the state information and applies two modified QoS-satisfying conditions to the selection rules. This strict probing condition and carefully designed probing approaches enable to strictly limit the set of neighbor nodes involved in the probing process, thereby reducing the message overhead without sacrificing the optimal properties. However, the PCSP scheme may suffer from high message overhead due to its conservative search process in the worst case. In order to bound such message overhead, we extend the PCSP algorithm by applying additional quantitative heuristics. Computer simulations reveal that the PCSP scheme reduces message overhead and possesses ideal success ratio with guaranteed optimal search. In addition, the quantitative extensions of the PCSP scheme turn out to bound the worst-case message overhead with slight performance degradation.