• Title/Summary/Keyword: Compromised nodes

Search Result 49, Processing Time 0.027 seconds

Monitoring-Based Secure Data Aggregation Protocol against a Compromised Aggregator in Wireless Sensor Networks (무선 센서 네트워크에서 Compromised Aggregator에 대응을 위한 모니터링 기반 시큐어 데이터 병합 프로토콜)

  • Anuparp, Boonsongsrikul;Lhee, Kyung-Suk;Park, Seung-Kyu
    • The KIPS Transactions:PartC
    • /
    • v.18C no.5
    • /
    • pp.303-316
    • /
    • 2011
  • Data aggregation is important in wireless sensor networks. However, it also introduces many security problems, one of which is that a compromised node may inject false data or drop a message during data aggregation. Most existing solutions rely on encryption, which however requires high computation and communication cost. But they can only detect the occurrence of an attack without finding the attacking node. This makes sensor nodes waste their energy in sending false data if attacks occur repeatedly. Even an existing work can identify the location of a false data injection attack but it has a limitation that at most 50% of total sensor nodes can participate in data transmission. Therefore, a novel approach is required such that it can identify an attacker and also increase the number of nodes which participate in data transmission. In this paper, we propose a monitoring-based secure data aggregation protocol to prevent against a compromised aggregator which injects false data or drops a message. The proposed protocol consists of aggregation tree construction and secure data aggregation. In secure data aggregation, we use integration of abnormal data detection with monitoring and a minimal cryptographic technique. The simulation results show the proposed protocol increases the number of participating nodes in data transmission to 95% of the total nodes. The proposed protocol also can identify the location of a compromised node which injects false data or drops a message. A communication overhead for tracing back a location of a compromised node is O(n) where n is the total number of nodes and the cost is the same or better than other existing solutions.

Probability Adjustment Scheme for the Dynamic Filtering in Wireless Sensor Networks Using Fuzzy Logic (무선 센서 네트워크에서 동적 여과를 위한 퍼지 기반 확률 조절 기법)

  • Han, Man-Ho;Lee, Hae-Young;Cho, Tae-Ho
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.159-162
    • /
    • 2008
  • Generally, sensor nodes can be easily compromised and seized by an adversary because sensor nodes are hostile environments after dissemination. An adversary may be various security attacks into the networks using compromised node. False data injection attack using compromised node, it may not only cause false alarms, but also the depletion of the severe amount of energy waste. Dynamic en-route scheme for Filtering False Data Injection (DEF) can detect and drop such forged report during the forwarding process. In this scheme, each forwarding nodes verify reports using a regular probability. In this paper, we propose verification probability adjustment scheme of forwarding nodes though a fuzzy rule-base system for the Dynamic en-route filtering scheme for Filtering False Data Injection in sensor networks. Verification probability determination of forwarding nodes use false traffic rate and distance form source to base station.

  • PDF

Control Method for the number of check-point nodes in detection scheme for selective forwarding attacks (선택적 전달 공격 탐지 기법에서의 감시 노드 수 제어기법)

  • Lee, Sang-Jin;Cho, Tae-Ho
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2009.08a
    • /
    • pp.387-390
    • /
    • 2009
  • Wireless Sensor Network (WSN) can easily compromised from attackers because it has the limited resource and deployed in exposed environments. When the sensitive packets are occurred such as enemy's movement or fire alarm, attackers can selectively drop them using a compromised node. It brings the isolation between the basestation and the sensor fields. To detect selective forwarding attack, Xiao, Yu and Gao proposed checkpoint-based multi-hop acknowledgement scheme (CHEMAS). The check-point nodes are used to detect the area which generating selective forwarding attacks. However, CHEMAS has static probability of selecting check-point nodes. It cannot achieve the flexibility to coordinate between the detection ability and the energy consumption. In this paper, we propose the control method for the number fo check-point nodes. Through the control method, we can achieve the flexibility which can provide the sufficient detection ability while conserving the energy consumption.

  • PDF

A Threshold Determining Method for the Dynamic Filtering in Wireless Sensor Networks Using Fuzzy System (동적 여과 프로토콜 적용 센서 네트워크에서의 퍼지 기반 보안 경계 값 결정 기법)

  • Lee, Sang-Jin;Lee, Hae-Young;Cho, Tae-Ho
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.197-200
    • /
    • 2008
  • In most sensor networks, nodes can be easily compromised by adversaries due to hostile environments. Adversaries may use compromised nodes to inject false reports into the sensor networks. Such false report attacks will cause false alarms that can waste real-world response effort, and draining the finite amount of energy resource in the battery-powered network. A dynamic enroute scheme proposed by Yu and Guan can detect and drop such false reports during the forwarding phase. In this scheme, choosing a threshold value is very important, as it trades off between security power and energy consumption. In this paper, we propose a threshold determining method which uses the fuzzy rule-based system. The base station periodically determines a threshold value though the fuzzy rule-based system. The number of cluster nodes, the value of the key dissemination limit, and the remaining energy of nodes are used to determine the threshold value.

  • PDF

A Resilient Key Renewal Scheme in Wireless Sensor Networks (센서 네트워크에서 복원력을 지닌 키갱신 방안)

  • Wang, Gi-Cheol;Cho, Gi-Hwan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.2
    • /
    • pp.103-112
    • /
    • 2010
  • In sensor networks, because sensors are deployed in an unprotected environment, they are prone to be targets of compromise attack, If the number of compromised nodes increases considerably, the key management in the network is paralyzed. In particular, compromise of Cluster Heads (CHs) in clustered sensor networks is much more threatening than that of normalsensors. Recently, rekeying schemes which update the exposed keys using the keys unknown to the compromised nodes are emerging. However, they cause some security and efficiency problems such as single group key employment in a cluster, passive eviction of compromised nodes, and excessive communication and computation overhead. In this paper, we present a proactive rekeying scheme using renewals of duster organization for clustered sensor networks. In the proposed scheme, each sensor establishes individual keys with neighbors at network boot-up time, and these keys are employed for later transmissions between sensors and their CH. By the periodic cluster reorganization, the compromised nodes are expelled from network and the individual keys employed in a cluster are changed continuously. Besides, newly elected CHs securely agree a key with sink by informing their members to sink, without exchangingany keying materials. The simulation results shows that the proposed scheme remarkably improves the confidentiality and integrity of data in spite of the increase of compromised nodes. Also, they show that the proposed scheme exploits the precious energy resource more efficiently than SHELL.

A Fuzzy Logic-Based False Report Detection Method in Wireless Sensor Networks (무선 센서 네트워크에서 퍼지 로직 기반의 허위 보고서 탐지 기법)

  • Kim, Mun-Su;Lee, Hae-Young;Cho, Tae-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.17 no.3
    • /
    • pp.27-34
    • /
    • 2008
  • Wireless sensor networks are comprised of sensor nodes with resource-constrained hardware. Nodes in the sensor network without adequate protection may be compromised by adversaries. Such compromised nodes are vulnerable to the attacks like false reports injection attacks and false data injection attacks on legitimate reports. In false report injection attacks, an adversary injects false report into the network with the goal of deceiving the sink or the depletion of the finite amount of energy in a battery powered network. In false data injection attacks on legitimate reports, the attacker may inject a false data for every legitimate report. To address such attacks, the probabilistic voting-based filtering scheme (PVFS) has been proposed by Li and Wu. However, each cluster head in PVFS needs additional transmission device. Therefore, this paper proposes a fuzzy logic-based false report detection method (FRD) to mitigate the threat of these attacks. FRD employs the statistical en-route filtering scheme as a basis and improves upon it. We demonstrate that FRD is efficient with respect to the security it provides, and allows a tradeoff between security and energy consumption, as shown in the simulation.

  • PDF

Secure Cluster Head Elections Based on Trust for Wireless Sensor Networks (무선 센서 네트워크를 위한 신뢰 기반의 안전한 클러스터 헤드 선출)

  • Wang, Gicheol;Cho, Gihwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.10
    • /
    • pp.50-64
    • /
    • 2013
  • In clustered sensor networks, since a CH (Cluster Head) collects data from its members and delivers the collected data to the sink, it is very important to prevent compromised nodes from joining a CH election and manipulating and fabricating the election result. In order to protect CH elections from compromised nodes, unpredictability, non-manipulability, and agreement property should be guaranteed in CH elections. However, existing CH election schemes cannot prevent intelligent compromised nodes from skilfully violating those properties via their cooperation. In this paper, we propose a scheme which protects the CH election process by detecting intelligent compromised nodes and excluding them. For every CH election round, each member gives a direct trust value to other members according to their behavior. Then a real reputation value is given to each member by combining the direct trust value and indirect trust values provided by other members. Then, each node evaluates the real reputation values of members in its cluster and excludes some untrustable nodes from CH candidates. The scheme greatly improves the non-manipulability and agreement property of CH election results compared to other rival schemes. Furthermore, the scheme preserves the high non-manipulability and the high agreement property even in an environment where message losses can happen.

KMMR: An Efficient and scalable Key Management Protocol to Secure Multi-Hop Communications in large scale Wireless Sensor Networks

  • Guermazi, Abderrahmen;Belghith, Abdelfettah;Abid, Mohamed;Gannouni, Sofien
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.901-923
    • /
    • 2017
  • Efficient key distribution and management mechanisms as well as lightweight ciphers are the main pillar for establishing secure wireless sensor networks (WSN). Several symmetric based key distribution protocols are already proposed, but most of them are not scalable, yet vulnerable to a small number of compromised nodes. In this paper, we propose an efficient and scalable key management and distribution framework, named KMMR, for large scale WSNs. The KMMR contributions are three fold. First, it performs lightweight local processes orchestrated into upward and downward tiers. Second, it limits the impact of compromised nodes to only local links. Third, KMMR performs efficient secure node addition and revocation. The security analysis shows that KMMR withstands several known attacks. We implemented KMMR using the NesC language and experimented on Telosb motes. Performance evaluation using the TOSSIM simulator shows that KMMR is scalable, provides an excellent key connectivity and allows a good resilience, yet it ensures both forward and backward secrecy. For a WSN comprising 961 sensor nodes monitoring a 60 hectares agriculture field, KMMR requires around 2.5 seconds to distribute all necessary keys, and attains a key connectivity above 96% and a resilience approaching 100%. Quantitative comparisons to earlier work show that KMMR is more efficient in terms of computational complexity, required storage space and communication overhead.

A Secure Cluster Formation Scheme in Wireless Sensor Networks (무선 센서 네트워크에서 안전한 클러스터 구성 방안)

  • Wang, Gi-Cheol;Cho, Gi-Hwan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.8
    • /
    • pp.84-97
    • /
    • 2012
  • In wireless sensor networks, cluster structure brings on many advantages such as load balancing, energy saving, and distributed key management, and so on. To transform a physical network into the cluster structure, sensor nodes should invoke a cluster formation protocol. During the protocol operation, if some nodes are compromised and they do not conform to the protocol, an inconsistency of membership in a cluster happen. This splits the cluster and consequently increases the number of clusters and decreases the number of members in the cluster. In this paper, we propose a scheme which well copes with such a problem. First, our scheme generates two hop clusters where hop distance between any two nodes is at most two. Besides, our scheme employs verification of two hop distant nodes to prevent the cluster split induced by compromised nodes. Last, our scheme mainly employs broadcast transmissions to reduce energy consumption of nodes. Simulation results have proven that our scheme reduces the number of clusters and more secure and energy-efficient than other scheme.

Secure route determination method to prevent sinkhole attacks in INSENS based wireless sensor networks (INSENS 기반의 무선 센서 네트워크에서 싱크홀 공격을 방어하기 위한 강화된 경로 설정 기법)

  • Song, Kyu-Hyun;Cho, Tae-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.4
    • /
    • pp.267-272
    • /
    • 2016
  • Wireless sensor networks (WSNs) are vulnerable to external intrusions due to the wireless communication characteristics and limited hardware resources. Thus, the attacker can cause sinkhole attack while intruding the network. INSENS is proposed for preventing the sinkhole attack. INSENS uses the three symmetric keys in order to prevent such sinkhole attacks. However, the sinkhole attack occurs again, even in the presence of INSENS, through the compromised node because INSENS does not consider the node being compromised. In this paper, we propose a method to counter the sinkhole attack by considering the compromised node, based on the neighboring nodes' information. The goals of the proposed method are i) network reliability improvement and ii) energy conservation through effective prevention of the sinkhole attack by detecting compromised nodes. The experimental results demonstrate that the proposed method can save up to, on average, 19.90% of energy while increasing up to, on average, 71.50%, the report reliability against internal sinkhole attacks in comparison to INSENS.