• Title/Summary/Keyword: Compressor wheel

Search Result 21, Processing Time 0.02 seconds

무심 연삭의 동시 연삭 및 복합 공정 개발에 관한 연구

  • ;TUSKISIM
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.32-32
    • /
    • 2004
  • 산업이 발전함에 따라 기계부품의 소형화, 고속화가 요구되는 세계적인 추세에서 정밀 가공기술은 기계 및 전자 부품 산업에서 중요한 위치를 차지하게 되었다. 특히, 원통형상을 가지는 부품의 가공에서 무심 연삭(Centerless Grinding) 공정은 높은 생산성과 정확한 치수 형성의 능력이 있어서 중요한 생산공정으로 발전되어 왔다. 예컨대 각종 Pin, Compressor의 Crankshaft, 소형 축, 연료분사기 등은 무심 연삭 공정을 통하여 높은 정밀도를 얻고 있다. 본 발표에서는 최근 생산 현장에서 요구되고 있는 고효율 연삭 공정을 위한 Shaft류의 외경과 단면의 복합공정 연삭 방법을 기술하였다.(중략)

  • PDF

Measurement of Inertia of Turbocharger Rotor in a Passenger Vehicle (승용차용 터보과급기 로터의 관성모멘트 측정)

  • Chung, Jin Eun;Lee, Sangwoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.1
    • /
    • pp.33-38
    • /
    • 2016
  • The turbocharger is an essential component to realize the engine down-sizing. The moment of inertia of turbocharger rotor is an important parameter with respect to acceleration performance of the vehicle. It can be calculated from the CAD software based the geometry data and the material properties. But the accurate value of the inertia of turbocharger rotor must be measured through the experimental method. In this study, the measurement of moment of inertia of turbocharger rotor for 2.0 L spark-ignition engine was carried out. First, an experimental equipment using a trifilar method was designed and fabricated. Some optical devices, that is, photo sensor, counter, convex lens, etc, were used to increase the accuracy of the measurement. Second, error sensitivity for the equipment was analyzed. The error of period time and the radius can give big affects to the accuracy of the moment of inertia. When the amount of error of these two were each 1.0 %, maximum error of the moment of inertia was under 3.0 %. Third, the calibration for the equipment was performed using a calibration rotor which has similar shape to turbine rotor but simple. Calculated value from CAD software and measured one for the calibration rotor were compared. The total error of the equipment and the measurement is about 1.3 %. This result shows that the equipment can give the good result with resonable accuracy. Finally the moment of inertia of the turbine rotor and compressor wheel were measured. The coefficient of variations, the ratio of standard deviation to mean value, were reasonably small at 0.57 % and 0.73 % respectively. Therefore this equipment is suitable for the measurement of the moment of inertia of the turbine rotor and compressor wheel.

Verification of Launch Vibration and Shock Isolation Performance for Spaceborne Compressor Vibration Isolator with SMA Mesh Washer (형상기억합금 메쉬 와셔를 이용한 우주용 냉각기 진동절연기의 발사 진동 및 충격 저감 성능검증)

  • Lee, Myeong-Jae;Han, Je-Heon;Oh, Hyun-Ung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.7
    • /
    • pp.517-524
    • /
    • 2014
  • Micro-vibration induced by on-board equipments such as fly-wheel and cryogenic cooler with mechanical moving parts affects the image quality of high-resolution observation satellite. Micro-vibration isolation system has been widely used for enhancing the pointing performance of observation satellites. In general, the micro-vibration isolation system requires a launch locking mechanism additionally to guarantee the structural safety of mission payloads supported by the isolation system with low stiffness under launch environment. In this study, we propose a passive launch and on-orbit vibration isolation system using shape memory alloy mesh washers for the micro-vibration isolation of spaceborne compressor, which does not require the additional launch locking mechanism. The basic characteristics of the isolator were measured in static and free vibration tests of the isolator, and a simple equivalent model of the isolator was proposed. The effectiveness of the isolator design in a launch environment was demonstrated through sine vibration, random vibration and shock tests.

Rotordynamic Analysis of Automotive Turbochargers Supported on Ball Bearings and Squeeze Film Dampers in Series: Effect of Squeeze Film Damper Design Parameters and Rotor Imbalances (볼 베어링과 스퀴즈 필름 댐퍼로 지지되는 차량용 터보차저의 회전체동역학 해석: 스퀴즈 필름 댐퍼 설계 인자와 회전체 불균형 질량의 영향)

  • Kim, Kyuman;Ryu, Keun
    • Tribology and Lubricants
    • /
    • v.34 no.1
    • /
    • pp.9-15
    • /
    • 2018
  • Modern high-performance automotive turbochargers (TCs) implement ceramic hybrid angular contact ball bearings in series with squeeze film dampers (SFDs) to enhance transient responses, thereby reducing the overall emission levels. The current study predicts the rotordynamic responses of the commercial automotive TCs (compressor wheel diameter = ~53 mm, turbine wheel diameter = ~43 mm, and shaft diameter at the bearing locations = ~7 mm) supported on ball bearings and SFDs for various design parameters of SFDs, including radial clearance, axial length, lubricant viscosity, and rotor imbalance conditions (i.e., amplitudes and phase angles) while increasing rotor speed up to 150 krpm. This study validates the predictive rotor finite element model against measurements of mass, polar and transverse moments of inertia, and free-free mode natural frequencies and mode shapes. A nonlinear rotordynamic model integrates nonlinear force coefficients of SFDs to calculate the transient responses of the TC rotor-bearing system. The predicted results show that SFD radial clearances, as well as phase angles of rotor imbalances, have the paramount effect on the dynamic responses of TC shaft motions.

Rotordynamic Analysis and Operation Test of Turbo Expander with Hydrostatic Bearing (정압베어링을 적용한 터보팽창기의 회전체 동역학 해석 및 구동시험)

  • Lee, Donghyun;Kim, Byungock;Jung, Junha;Lim, Hyungsoo
    • Tribology and Lubricants
    • /
    • v.38 no.2
    • /
    • pp.33-40
    • /
    • 2022
  • In this study, we present rotor dynamic analysis and operation test of a turbo expander for a hydrogen liquefaction plant. The turbo expander consists of a turbine and compressor wheel connected to a shaft supported by two hydrostatic radial and thrust bearings. In rotor dynamic analysis, the shaft is modeled as a rigid body, and the equations of motion for the shaft are solved using the unsteady Reynolds equation. Additionally, the operating test of the turbo expander has been performed in the test rig. Pressurized helium is supplied to the bearings at 8.5 bar. Furthermore, we monitor the shaft vibration and flow rate of the helium supplied to the bearings. The rotor dynamic analysis result shows that there are two critical speeds related with the rigid body mode under 40,000 rpm. At the first critical speed of 36,000 rpm, the vibration at the compressor side is maximum, whereas that of the turbine is maximum at the second critical speed of 40,000 rpm. The predicted maximum shaft vibration is 3 ㎛, whereas sub-synchronous vibration is not presented. The operation test results show that there are two critical speeds under the rated speed, and the measured vibration value agrees well with predicted value. The measured flow rate of the helium supplied to the bearing is 2.0 g/s, which also agrees well with the predicted data.

Development of the Evaluation Method for Aerodynamic Noise Caused by Pressure Pulsation in the Turbocharged Diesel Engine (디젤엔진 공기과급기의 압력맥동 기인소음 평가기법 개발)

  • Lee, Jong-Kyu;Kim, Hyung-Jin;Kang, Koo-Tae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.918-922
    • /
    • 2007
  • Aero-pulsation noise, generally caused by geometric asymmetry of a rotating device, is considerable source of annoyance in passenger cars using the turbocharged diesel engine. Main source of this noise is the compressor wheel in the turbocharger system, and can be reduced by after-treatment such as silencers, but which may increase the manufacturing cost. More effective solution is to improve the geometric symmetry over all, or to control the quality of components by sorting out inferior ones. The latter is more effective and reasonable than the former in view of manufacturing. So, an appropriate discrimination method should be needed to evaluate aero-pulsation noise level at the production line. In this paper, we introduce the accurate method which can measure the noise level of aeropulsation and also present its evaluation criteria. Besides verifying the reliability of a measurement system - a rig test system -, we analyze the correlation between the results from rig tests and those from vehicle tests. The gage R&R method is carried out to check the repeatability of measurements over 25 samples. From the result, we propose the standard specification which can discriminate inferior products from superior ones on the basis of aero-pulsation noise level.

  • PDF

Rotordynamic Characteristics Analysis of Turbocharger Turbine for Spin Test (터보차져용 터빈의 스핀 테스트를 위한 로터다이나믹 특성분석)

  • Kim, Byung-Ok;Yang, Sung-Jin;Lee, Myung-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.6
    • /
    • pp.91-95
    • /
    • 2011
  • This paper deals with the detail rotordynamic analysis for the assembly rotor composed of turbine wheel, turbine shaft, connecting arbor, and flange & spindle in order to perform the spin test of turbocharger turbine. Prior to rotordynamic analysis, the 1st spin test was performed but the test was failed by excess vibration in the neighborhood rated speed. It is the reason for this fail that the separation margin between the rated speed and critical speed is not enough, confirmed by rotordynamic analysis results. Since then, the dimension of turbine shaft was modified and the critical speeds were again reviewed for modified assmebly rotor. In results, the separation margin between the rated speed and critical speed is over 20% and then the 2nd spin test was performed successfully. In preparing spin test for turbine, compressor wheels and etc., the geometry design of connecting arbor and dimension of rough machining should be reviewed by considering rotordynamic results, and the separation margin should be enough for successful spin test.

Development of Rotordynamic Analytical Model and Analysis of Vibration Response of a Turbocharger (터보차져의 로터다이나믹 해석모델 개발 및 진동응답 해석)

  • Kim, Byung-Ok;Lee, An-Sung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.5
    • /
    • pp.35-42
    • /
    • 2010
  • This paper deals with the development of analytical model of a turbocharger and its detail rotordynamic analysis. Two analytical models, which are verified by experimental modal testing, are proposed and the analytical model including rotor shaft extended to compressor and turbine wheel end side is chosen. A rotordynamic analysis includes the critical map, Campbell diagram, stability, and unbalance response, especially nonlinear transient response considering nonlinear fluid film force at bearings. Although the linearized analysis accurately predicts the critical speeds, stability limit, and stability threshold speed, the predicted vibration results are not valid for speeds above the stability threshold speed since the rotor vibrates with a subsynchronous component much larger than the one synchronous with rotor speed. Hence, for operating speed above the stability threshold, a nonlinear transient analysis considering nonlinear fluid film force must be performed in order to accurately predict vibration responses of rotor and guarantee results of analysis.

Efficient Modal Analysis of Prestressed Structures via Model Order Reduction (모델차수축소법을 이용한 프리스트레스 구조물의 효율적인 고유진동해석)

  • Han, Jeong-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1211-1222
    • /
    • 2011
  • It is necessary to use prestressed modal analysis to calculate the modal frequencies and mode shapes of a prestressed structure such as a spinning blade, a preloaded structure, or a thermally deformed pipe, because the prestress effect sometimes causes significant changes in the frequencies and mode shapes. When the finite element model under consideration has a very large number of degrees of freedom, repeated prestressed modal analyses for investigating the prestress effects might become too computationally expensive to finish within a reasonable design-process time. To alleviate these computational difficulties, a Krylov subspace-based model order reduction, which reduces the number of degrees of freedom of the original finite element model and speeds up the necessary prestressed modal analysis with the reduced order models (ROMs), is presented. The numerical process for the moment-matching model reduction is performed directly on the full order models (FOMs) (modeled in ANSYS) by the Arnoldi process. To demonstrate the advantages of this approach for performing prestressed modal analysis, the prestressed wheel and the compressor impeller under their high-speed rotation are considered as examples.

Development of Turbo Expanders with Hydrostatic Bearings for Hydrogen Liquefaction Plants (정압 베어링을 적용한 수소 액화 공정용 터보 팽창기 개발)

  • Lee, Donghyun;Kim, Byungock;Park, Mooryong;Lim, Hyungsoo
    • Tribology and Lubricants
    • /
    • v.37 no.3
    • /
    • pp.91-98
    • /
    • 2021
  • This paper presents a hydrostatic bearing design and rotordynamic analysis of a turbo expander for a hydrogen liquefaction plant. Th~e turbo expander includes the turbine and compressor wheel assembled to a shaft supported by two hydrostatic radial and thrust bearings. The rated speed is 75,000 rpm and the rated power is 6 kW. For the bearing operation, we use pressurized air at 8.5 bar as the lubricant that is supplied to the bearing through the orifice restrictor. We calculate the bearing stiffness and flow rate for various gauge pressure ratios and select the orifice diameter providing the maximum bearing stiffness. Additionally, we conduct a rotordynamic analysis based on the calculated bearing stiffness and damping considering design parameters of the turbo expander. The predicted Cambell diagram indicates that there are two critical speeds under the rated speed and there exists a sufficient separation margin for the rated speed. In addition, the predicted rotor vibration is under 1 ㎛ at the rated speed. We conduct the operating test of the turbo expander in the test rig. For the operation, we supply pressurized air to the turbine and monitor the shaft vibration during the test. The test results show that there are two critical speeds under the rated speed, and the shaft vibration is controlled under 2.5 ㎛.