• Title/Summary/Keyword: Compressive working

Search Result 94, Processing Time 0.03 seconds

Effect of Curing Temperature on Mechanical Properties of Polymer Mortar for Urgent Repairing (양생온도가 긴급 보수용 폴리머 모르타르의 역학적 특성에 미치는 영향)

  • Cho, Yong In;Hong, Ki Nam;Kim, Min Sung;Park, Jae Kyu
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.5
    • /
    • pp.109-116
    • /
    • 2016
  • This study presents the results of experiments to investigate the effect of polymer type and curing temperature on the mechanical properties of polymer mortar. Setting time of two types of polymers, hardening-delayed polymer(HDP) and rapid hardening polymer(RHP), was tested to check the working time. Additionally, flexural strength, compressive strength, and splitting tensile strength was investigated for mortars using these polymers. From these results, it was confirmed that, irrespective to curing temperature, RHP mortar at the curing age of 24h develops the similar mechanical properties to maximum properties and HDP mortar is more sensitive to the curing temperature. In addition, it should be noted that RHP mortar and HDP mortar are suitable in winter and summer, respectively.

Field Testing Methods on Early Shotcrete Strength for Tunnel Quality Control (터널의 품질관리를 위한 숏크리트 초기강도의 현장강도 시험기술)

  • Hong, Eui-Joon;Chang, Seok-Bue;Lee, Sung-Woo;Kim, Ki-Lim;Moon, Sang-Jo
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.468-476
    • /
    • 2007
  • Generally, the strength of the field shotcrete is heavily dependent on the field mixing and spraying conditions so that it is different from the strength of the shotcrete mixed in laboratories. As a support member, the early strength of shotcrete unlike concrete as structural material is very important to the initial stabilization of the excavation face in tunnels. Therefore, the field methods to efficiently test the early strength of shotcrete have been highly required. This paper aimed to verify the pneumatic pin penetration test and the point load test for measuring the early strength of the field shotcrete. Through a series of uniaxial compression, pin penetration, and point load tests for the range of the early shotcrete strength, two equations to estimate reliably the uniaxial compressive strength by the pin penetration and the point load tests were derived. Field tests in working tunnel were carried out in order to estimate the economic efficiency. As a result, pin penetration method was proved to be the most effective method for testing the early strength of the field shotcrete.

  • PDF

Prediction of creep in concrete using genetic programming hybridized with ANN

  • Hodhod, Osama A.;Said, Tamer E.;Ataya, Abdulaziz M.
    • Computers and Concrete
    • /
    • v.21 no.5
    • /
    • pp.513-523
    • /
    • 2018
  • Time dependent strain due to creep is a significant factor in structural design. Multi-gene genetic programming (MGGP) and artificial neural network (ANN) are used to develop two models for prediction of creep compliance in concrete. The first model was developed by MGGP technique and the second model by hybridized MGGP-ANN. In the MGGP-ANN, the ANN is working in parallel with MGGP to predict errors in MGGP model. A total of 187 experimental data sets that contain 4242 data points are filtered from the NU-ITI database. These data are used in developing the MGGP and MGGP-ANN models. These models contain six input variables which are: average compressive strength at 28 days, relative humidity, volume to surface ratio, cement type, age at start of loading and age at the creep measurement. Practical equation based on MGGP was developed. A parametric study carried out with a group of hypothetical data generated among the range of data used to check the generalization ability of MGGP and MGGP-ANN models. To confirm validity of MGGP and MGGP-ANN models; two creep prediction code models (ACI209 and CEB), two empirical models (B3 and GL 2000) are used to compare their results with NU-ITI database.

A Study on the Compression Characteristics of Bi-polymer O-rings (복합소재 O-링의 압축변형 특성에 관한 연구)

  • Kim, Do-Hyun;Kim, Chung-Kyun
    • Tribology and Lubricants
    • /
    • v.21 no.4
    • /
    • pp.171-176
    • /
    • 2005
  • O-ring seal is an essential component in various mechanical apparatuses for a sealing of oil container and pressure vessels. This paper presents the sealing pressure and compressive contact behaviors of hi-polymer O-rings, which is made by an outer shell of FFKM material and an inner solid ring of FKM one. The contact normal pressure and its ratios are measured by experimental method with an automatic control system of the working temperature and analyzed numerically by using the non-linear Marc FEM program. The results show reasonably good agreements between the computed FEM results and measured ones when the operating temperature is kom normal temperature of $18^{\circ}C$ and a high temperature of $300^{\circ}C$ But the compared values between the computed and tested results show a little difference because of the increased temperature, which is related to the non-linear parameter of the O-ring material. Bi-polymer 0-ring shows a good contact normal stress and compression behavior for a given operation temperature and compression ratio.

The Critical Speed Analysis of the Differential Planetary Gear Train of a Concrete Mixer Truck Mixer Reducer (콘크리트 믹서 트럭용 믹서 감속기의 차동 유성 기어 트레인에 대한 위험속도 해석)

  • Bae, Myung Ho;Bae, Tae Yeol;Kim, Dang Ju
    • Journal of Drive and Control
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • The power train of a concrete truck mixer reducer includes differential planetary gears to get a large reduction ratio for operating the mixer drum in a compact structure. These differential planetary gears are a very important part of the mixer reducer where strength problems are the main concern. Gear bending stress, gear compressive stress and scoring failure are the main concerns. Many failures in differential planetary gears are due to the insufficient gear strength and resonance problems caused by major excitation forces such as gear mating failure in the transmission. In the present study, where the excitation frequencies are the gear tooth passing frequencies of the mating gears, a Campbell diagram is used to calculate differential planetary gear critical speeds. Mode shapes and natural frequencies of the differential planetary gears are calculated by CATIA V5. These are used to predict gear resonance failures by comparing the working speed range with the critical speeds due to the gear transmission errors of the differential planetary gears.

Ultimate strength behavior of steel-concrete-steel sandwich beams with ultra-lightweight cement composite, Part 1: Experimental and analytical study

  • Yan, Jia-Bao;Liew, J.Y. Richard;Zhang, Min-Hong;Wang, Junyan
    • Steel and Composite Structures
    • /
    • v.17 no.6
    • /
    • pp.907-927
    • /
    • 2014
  • Ultra-lightweight cement composite (ULCC) with a compressive strength of 60 MPa and density of $1450kg/m^3$ has been developed and used in the steel-concrete-steel (SCS) sandwich structures. ULCC was adopted as the core material in the SCS sandwich composite beams to reduce the overall structural weight. Headed shear studs working in pairs with overlapped lengths were used to achieve composite action between the core material and steel face plates. Nine quasi-static tests on this type of SCS sandwich composite beams were carried out to evaluate their ultimate strength performances. Different parameters influencing the ultimate strength of the SCS sandwich composite beams were studied and discussed. Design equations were developed to predict the ultimate resistance of the cross section due to pure bending, pure shear and combined action between shear and moment. Effective stiffness of the sandwich composite beam section is also derived to predict the elastic deflection under service load. Finally, the design equations were validated by the test results.

The Critical Speed Analysis of Gear Train for Hydro-Mechanical Continuously Variable Transmission (기계유압식 무단변속기용 기어트레인에 대한 위험속도 해석)

  • Bae, Myung Ho;Bae, Tae Yeol;Choi, Sung Kwang
    • Journal of Drive and Control
    • /
    • v.14 no.4
    • /
    • pp.71-78
    • /
    • 2017
  • The power train of hydro-mechanical continuously variable transmission (HMCVT) for 8-ton class forklift includes hydro-static units, hydraulic multi-wet disc brake & clutches and complex helical & planetary gears. The helical & planetary gears are key components of HMCVT's power train wherein strength problems are the main concerns including gear bending stress, gear compressive stress, and scoring failure. Many failures in power train gears of HMCVT are due to the insufficient gear strength and resonance problems caused by major excitation forces, such as gear transmission error of mating gear fair in the transmission. In this study, wherein excitation frequencies are the gear tooth passing frequencies of the mating gears, a Campbell diagram is used to calculate the power train gears' critical speeds. Mode shapes and natural frequencies of the power train gears are calculated by CATIA V5. These are used to predict resonance failures by comparing the actual working speed range with the critical speeds due to the gear transmission errors of HMCVT's power train gears.

Axial compression performance of basalt-fiber-reinforced recycled-concrete-filled square steel tubular stub column

  • Zhang, Xianggang;Gao, Xiang;Wang, Xingguo;Meng, Ercong;Wang, Fang
    • Advances in concrete construction
    • /
    • v.10 no.6
    • /
    • pp.559-571
    • /
    • 2020
  • This study aimed to inspect the axial compression mechanical performance of basalt-fiber-reinforced recycled - concrete (BFRRC)-filled square steel tubular stub column. The replacement ratio of recycled coarse aggregate (RCA) and the basalt fiber (BF) dosage were used as variation parameters, and the axial compression performance tests of 15 BFRRC-filled square steel tubular stub column specimens were conducted. The failure mode and the load-displacement/strain curve of the specimen were measured. The working process of the BFRRC-filled square steel tubular stub column was divided into three stages, namely, elastic-elastoplasticity, sudden drawdown, and plasticity. The influence of the design parameters on the peak bearing capacity, energy dissipation performance, and other axial compression performance indexes was discussed. A mathematical model of segmental stiffness degradation was proposed on the basis of the degradation law of combined secant-stiffness under axial compression. The full-process curve equation of axial compressive stress-strain was proposed by introducing the influencing factors, including the RCA replacement ratio and the BF dosage, and the calculated curve agreed well with the test-measured curve.

Comparative Analysis on the Surface Property of SKD 61 Die-casting Steel Using Multilayer PVD Coating (다층 PVD 코팅을 이용한 SKD 61다이캐스팅 강의 표면 특성 비교 분석)

  • Kim, Seung Wook
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.2
    • /
    • pp.43-50
    • /
    • 2021
  • The properties of materials which are widely used in industry fields like automobile, shipbuilding, casting, and electronics are strongly needed to have higher surface hardness, lower surface roughness, and higher compressive residual stress. As mentioned above, for the purpose of satisfying three factors, a variety of researches with respect to surface improvement have been actively studied and applied to every industry. SKD61 which is mostly used for die casting process of cold chamber method must meet a countless number of problems which are thermal, mechanical and chemical from highly specific working environment at high temperature over 600℃. Above all, in case of plunger sleeves used for die casting process, thermal fatigue has a bad effect on the surface of an inlet where molten metal is repeatedly injected. On account of it, plunger sleeves cause manufacturers to deteriorate quality of products. Therefore, in this paper, to improve the surface of an inlet of plunger sleeve, multilayer PVD coating using Ti, Cr and Mo is suggested. Furthermore, The surface characteristics such as surface roughness(Rsa, Rsq), surface hardness(HRB, HRC) and residual stress using XRD(X-ray diffractometer) of coated samples and specimens are studied and discussed.

Analytical behavior of built-up square concrete-filled steel tubular columns under combined preload and axial compression

  • Wang, Jian-Tao;Wang, Fa-Cheng
    • Steel and Composite Structures
    • /
    • v.38 no.6
    • /
    • pp.617-635
    • /
    • 2021
  • This paper numerically investigated the behavior of built-up square concrete-filled steel tubular (CFST) columns under combined preload and axial compression. The finite element (FE) models of target columns were verified in terms of failure mode, axial load-deformation curve and ultimate strength. A full-range analysis on the axial load-deformation response as well as the interaction behavior was conducted to reveal the composite mechanism. The parametric study was performed to investigate the influences of material strengths and geometric sizes. Subsequently, influence of construction preload on the full-range behavior and confinement effect was investigated. Numerical results indicate that the axial load-deformation curve can be divided into four working stages where the contact pressure of curling rib arc gradually disappears as the steel tube buckles; increasing width-to-thickness (B/t) ratio can enhance the strength enhancement index (e.g., an increment of 1.88% from B/t=40 to B/t=100), though ultimate strength and ductility are decreased; stiffener length and lip inclination angle display a slight influence on strength enhancement index and ductility; construction preload can degrade the plastic deformation capacity and postpone the origin appearance of contact pressure, thus making a decrease of 14.81%~27.23% in ductility. Finally, a revised equation for determining strain εscy corresponding to ultimate strength was proposed to evaluate the plastic deformation capacity of built-up square CFST columns.