Browse > Article
http://dx.doi.org/10.12989/scs.2021.38.6.617

Analytical behavior of built-up square concrete-filled steel tubular columns under combined preload and axial compression  

Wang, Jian-Tao (Department of Civil Engineering, Tsinghua University)
Wang, Fa-Cheng (Department of Civil Engineering, Tsinghua University)
Publication Information
Steel and Composite Structures / v.38, no.6, 2021 , pp. 617-635 More about this Journal
Abstract
This paper numerically investigated the behavior of built-up square concrete-filled steel tubular (CFST) columns under combined preload and axial compression. The finite element (FE) models of target columns were verified in terms of failure mode, axial load-deformation curve and ultimate strength. A full-range analysis on the axial load-deformation response as well as the interaction behavior was conducted to reveal the composite mechanism. The parametric study was performed to investigate the influences of material strengths and geometric sizes. Subsequently, influence of construction preload on the full-range behavior and confinement effect was investigated. Numerical results indicate that the axial load-deformation curve can be divided into four working stages where the contact pressure of curling rib arc gradually disappears as the steel tube buckles; increasing width-to-thickness (B/t) ratio can enhance the strength enhancement index (e.g., an increment of 1.88% from B/t=40 to B/t=100), though ultimate strength and ductility are decreased; stiffener length and lip inclination angle display a slight influence on strength enhancement index and ductility; construction preload can degrade the plastic deformation capacity and postpone the origin appearance of contact pressure, thus making a decrease of 14.81%~27.23% in ductility. Finally, a revised equation for determining strain εscy corresponding to ultimate strength was proposed to evaluate the plastic deformation capacity of built-up square CFST columns.
Keywords
built-up square CFST columns; compressive behavior; FE modelling; full-range analysis; construction preload;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Susantha, K.A.S., Ge, H. and Usami, T. (2001), "Confinement evaluation of concrete-filled box-shaped steel columns", Steel Compos. Struct., 1(3), 313-328. https://doi.org/10.12989/scs.2001.1.3.313.   DOI
2 T/CCES 7-2020 (2020), Technical specification for concrete-filled double skin steel tubular structures, China Civil Engineering Society; Beijing, China. (in Chinese)
3 T/CECS 663-2020 (2020), Technical specification for concrete-encased concrete-filled steel tubular structures, China Association for Engineering Construction Standardization; Beijing, China. (in Chinese)
4 Tang, G.Q., Xiao, Y. and Zhang, Y.T. (2015), "Study of bearing capacity and complete stress-strain curves for concrete filled square steel tube columns", Eng. Mech., 32(8), 103-111. (in Chinese)
5 Tao, Z., Han, L.H. and Wang, D.Y. (2007), "Experimental behaviour of concrete-filled stiffened thin-walled steel tubular columns", Thin-Wall. Struct., 45(5), 517-527. https://doi.org/10.1016/j.tws.2007.04.003.   DOI
6 Tao, Z., Han, L.H. and Wang, Z.B. (2005), "Experimental behaviour of stiffened concrete-filled thin-walled hollow steel structural (HSS) stub columns", J. Constr. Steel Res., 61(7), 962-983. https://doi.org/10.1016/j.jcsr.2004.12.003.   DOI
7 Tao, Z., Uy, B., Han, L.H. and Wang, Z.B. (2009), "Analysis and design of concrete-filled stiffened thin-walled steel tubular columns under axial compression", Thin-Wall. Struct., 47(12), 1544-1556. https://doi.org/10.1016/j.tws.2009.05.006.   DOI
8 Wang, F.C., Han, L.H. and Li, W. (2018), "Analytical behavior of CFDST stub columns with external stainless steel tubes under axial compression", Thin-Wall. Struct., 127, 756-768. https://doi.org/10.1016/j.tws.2018.02.021.   DOI
9 Wang, F.C., Zhao, H.Y. and Han, L.H. (2019a), "Analytical behavior of concrete-filled aluminum tubular stub columns under axial compression", Thin-Wall. Struct., 140, 21-30. https://doi.org/10.1016/j.tws.2019.03.019.   DOI
10 Wang, J., Sun, Q. and Li, J. (2019b), "Experimental study on seismic behavior of high-strength circular concrete-filled thin-walled steel tubular columns", Eng. Struct., 182, 403-415. https://doi.org/10.1016/j.engstruct.2018.12.098.   DOI
11 Wang, J., Sun, Q., Wu, X. and Wu, Y. (2019c), "Experimental and analytical investigation on seismic behavior of Q690 circular high-strength concrete-filled thin-walled steel tubular columns", Struct. Des. Tall Spec. Build., 28(5), e1583. https://doi.org/10.1002/tal.1583.   DOI
12 Wang, N. and Lee, M.J. (2015), "Structural behavior of beam-to-column connections of circular CFST columns by using mixed diaphragms", Int. J. Steel Struct., 15(2), 347-364. https://doi.org/10.1007/s13296-015-6007-4.   DOI
13 Wang, Y., Yang, Y. and Zhang, S. (2012), "Static behaviors of reinforcement-stiffened square concrete-filled steel tubular columns", Thin-walled Struct., 58, 18-31. https://doi.org/10.1016/j.tws.2012.04.015.   DOI
14 Wang, Z.B., Tao, Z. and Yu, Q. (2017), "Axial compressive behaviour of concrete-filled double-tube stub columns with stiffeners", Thin-Wall. Struct., 120, 91-104. https://doi.org/10.1016/j.tws.2017.08.025.   DOI
15 Xu, B., Wu, F. and Xu, G. (2018), "Mechanism study on the axial compressive performance of short square CFST columns with different stiffeners", Adv. Civ. Eng., 2018, 1-10. https://doi.org/10.1155/2018/9109371.   DOI
16 Zhou, S.M. (2019), "Mechanical behavior of concrete filled high-strength thin-walled steel tubular members", Ph.D. Dissertation, Xi'an Jiaotong University, Xi'an. (in Chinese)
17 Yang, Y., Wang, Y. and Fu, F. (2014), "Effect of reinforcement stiffeners on square concrete-filled steel tubular columns subjected to axial compressive load", Thin-Wall. Struct., 82, 132-144. https://doi.org/10.1016/j.tws.2014.04.009.   DOI
18 Zand, A.W.A., BadaruZZaman, W.H., Ali, M.M., Hasan, Q.A. and Al-Shaikhli, M. S. (2020), "Flexural performance of cold-formed square CFST beams strengthened with internal stiffeners", Steel Compos. Struct., 34(1), 123-139. https://doi.org/10.12989/scs.2020.34.1.123.   DOI
19 Zhang, Y., Xu, C. and Lu, X. (2007), "Experimental study of hysteretic behaviour for concrete-filled square thin-walled steel tubular columns", J. Constr. Steel Res., 63(3), 317-325. https://doi.org/10.1016/j.jcsr.2006.04.014.   DOI
20 Zhou, Z., Gan, D. and Zhou, X. (2019), "Improved composite effect of square concrete-filled steel tubes with diagonal binding ribs", J. Struct. Eng., 145(10), 04019112. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002400.   DOI
21 Han, L.H. (2016), Concrete Filled Steel Tubular Structures--Theory and Practice (Third Edition), Science Press, Beijing, China. (in Chinese)
22 Cai, J. and He, Z.Q. (2006), "Axial load behavior of square CFT stub column with binding bars", J. Constr. Steel Res., 62(5), 472-483. https://doi.org/10.1016/j.jcsr.2005.09.010.   DOI
23 Chen, Z.Y., Qin, X.Q., Shen, Z.Y. and Chen, G.J. (2003), "Test of the lateral pressure of the wall of concrete-filled rectangular steel columns at construction stage", Build. Struct., 33(7), 27-28. (in Chinese)
24 Ge, H. and Usami, T. (1992), "Strength of concrete-filled thin-walled steel box columns: experiment", J. Struct. Eng., 118(11), 3036-3054. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:11(3036).   DOI
25 Hou, C. and Han, L.H. (2017), "Analytical behaviour of CFDST chord to CHS brace composite K-joints", J. Constr. Steel Res., 128, 618-632. https://doi.org/10.1016/j.jcsr.2016.09.027.   DOI
26 Han, L.H. and Yang, Y.F. (2007), Modern concrete filled steel tube structure technology, China Architecture & Building Press, Beijing, China. (in Chinese)
27 Han, L.H., Li, W., Wang, W.D. and Tao, Z. (2017), Advanced Composite and Mixed Structures: Testing, Theory and Design Approach (Second Edition), Science Press, Beijing, China. (in Chinese)
28 Hillerborg, A., Modeer, M. and Petersson, P.E. (1976), "Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements", Cem. Concr. Res., 6(6), 773-781. https://doi.org/10.1016/0008-8846(76)90007-7.   DOI
29 Huang, C.S., Yeh, Y.K., Liu, G.Y., Hu, H.T., Tsai, K.C., Weng, Y. T., Wang, S.H. and Wu, M.H. (2002), "Axial load behavior of stiffened concrete-filled steel columns", J. Struct. Eng., 128(9), 1222-1230. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:9(1222).   DOI
30 Ellobody, E. (2007), "Nonlinear behavior of concrete-filled stainless steel stiffened slender tube columns", Thin-walled Struct., 45(3), 259-273. https://doi.org/10.1016/j.tws.2007.02.011.   DOI
31 Kim, S.H., Yom, K.S. and Choi, S.M. (2015), "A study on the structural performance of new shape built-up square column under concentric axial load", Steel Compos. Struct., 18(6), 1451-1464. https://doi.org/10.12989/scs.2015.18.6.1451.   DOI
32 Lee, S.H., Choi, Y.H., Kim, Y.H. and Choi, S.M. (2012), "Structural performance of welded built-up square CFST stub columns", Thin-Wall. Struct., 52, 12-20. https://doi.org/10.1016/j.tws.2011.09.003.   DOI
33 Kitada, T. (1998), "Ultimate strength and ductility of state-of-the-art concrete-filled steel bridge piers in Japan", Eng. Struct., 20(4-6), 347-354. https://doi.org/10.1016/S0141-0296(97)00026-6.   DOI
34 Lai, B., Liew, J.Y. and Xiong, M. (2019), "Experimental and analytical investigation of composite columns made of high strength steel and high strength concrete", Steel Compos. Struct., 33(1), 67-79. https://doi.org/10.12989/scs.2019.33.1.067.   DOI
35 Lee, K.C. and Yoo, C.H. (2012), "Longitudinal stiffeners in concrete-filled tubes", J. Struct. Eng., 138(6), 753-758. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000526.   DOI
36 Lee, S.H., Kim, S.H., Kim, Y. H., Tao, Z. and Choi, S. M. (2011), "Water-pressure test and determination of welding-throat-depth for welded built-up square CFST column", J. Constr. Steel Res., 67(7), 1065-1077. https://doi.org/10.1016/j.jcsr.2011.02.012.   DOI
37 Li, G., Hou, C., Han, L.H. and Shen, L. (2020), "Numerical study of concrete-encased CFST under preload followed by sustained service load", Steel Compos. Struct., 35(1), 93-109. https://doi.org/10.12989/scs.2020.35.1.093.   DOI
38 Morishita, Y. (1982), "Experimental Studies on Bond Strength between Square Steel Tube in Concrete Filled and Encased Concrete Core under Cyclic Shearing Force and Constant Axial Force", Trans. Japan Concr. Inst., 4, 363-370.
39 Liang, W., Dong, J. and Wang, Q. (2018), "Axial compressive behavior of concrete-filled steel tube columns with stiffeners", Steel Compos. Struct., 29(2), 151-159. https://doi.org/10.12989/scs.2018.29.2.151.   DOI
40 Morishita, Y. (1979), "Experimental studies on bond strength in concrete filled circular steel tubular columns subjected to axial loads", Trans. Japan Concr. Inst., 1, 351-358.
41 Mursi, M. and Uy, B. (2003), "Strength of concrete filled steel box columns incorporating interaction buckling", J. Struct. Eng., 129(5), 626-639. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:5(626).   DOI
42 Patel, V.I., Liang, Q.Q. and Hadi, M.N. (2013), "Numerical analysis of circular concrete-filled steel tubular slender beam-columns with preload effects", Int. J. Struct. Stab. Dyn., 13(03), 1250065. https://doi.org/10.1142/S0219455412500654.   DOI
43 Ren, W., Sneed, L.H., Yang, Y. and He, R. (2015), "Numerical simulation of prestressed precast concrete bridge deck panels using damage plasticity model", Int. J. Concr. Struct. Mater., 9(1), 45-54. https://doi.org/10.1007/s40069-014-0091-2.   DOI
44 Shi, Y.J., Wang, M. and Wang, Y.Q. (2012), "Study on constitutive model of structural steel under cyclic loading", Eng. Mech., 29(9), 92-98. (in Chinese)
45 Sun, Q., Qu, S. and Wu, X. (2019), "Ultimate load capacity analysis of Q690 high-strength steel KK-type tube-gusset plate connections", J. Struct. Eng., 145(8), 04019074. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002363.   DOI