• 제목/요약/키워드: Compressive test

검색결과 3,609건 처리시간 0.034초

감마선을 이용한 Metronidazole이 함유된 Poly(vinyl alcohol) 하이드로겔 제조 및 특성 (Preparation and Characterization of Poly(vinyl alcohol) Hydrogel Contain Metronidazole by Irradiation)

  • 백재;박종석;정진오;정성인;권희정;안성준;임윤묵
    • 방사선산업학회지
    • /
    • 제10권1호
    • /
    • pp.21-27
    • /
    • 2016
  • Periodontitis is disease of damaged gum tissue that is not removed the plaque onto teeth. In case that the symptoms of disease get pain worse, it will have to extract tooth because of tumefy or bleeding at gums so treatment of drug was required to periodontitis. In this study, the hydrogel was prepared by including superior viscous, excellent elastic, and biocompatibility of Poly(vinyl alcohol, PVA) and antimicrobial drug of Metronidazole (MD). The 15 wt% PVA was dissolved in deionized water and then prepared PVA solution was irradiated using gamma-ray at 25 kGy ($10kGy\;hr^{-1}$). In addition, PVA hydrogel was immersed in each 0.1, 0.25 and 0.5 wt% MD solution using stirrer for 24 hr. The result of the gelation, 0.5 wt% MD loaded PVA hydrogel(76%) was lower than PVA hydrogel (88.2%). The swelling ration of 0.5 wt% MD loaded PVA hydrogel (294.8%) was higher than PVA hydrogel (105.2%). The compressive strength and thermal properties of MD loaded PVA hydrogel was gradually lower. The drug release test of 0.5 wt% MD loaded PVA hydrogel (61%) was higher than 0.1 wt% MD loaded PVA hydrogel (12%). Therefore, MD loaded PVA hygrogel may be a promising tool for periodontitis medicine by gamma-ray.

Investigation of residual stresses of hybrid normal and high strength steel (HNHSS) welded box sections

  • Kang, Lan;Wang, Yuqi;Liu, Xinpei;Uy, Brian
    • Steel and Composite Structures
    • /
    • 제33권4호
    • /
    • pp.489-507
    • /
    • 2019
  • In order to obtain high bearing capacity and good ductility simultaneously, a structural column with hybrid normal and high strength steel (HNHSS) welded box section has been developed. Residual stress is an important factor that can influence the behaviour of a structural member in steel structures. Accordingly, the magnitudes and distributions of residual stresses in HNHSS welded box sections were investigated experimentally using the sectioning method. In this study, the following four box sections were tested: one normal strength steel (NSS) section, one high strength steel (HSS) section, and two HNHSS sections. Based on the experimental data from previous studies and the test results of this study, the effects of the width-to-thickness ratio of plate, yield strength of plate, and the plate thickness of the residual stresses of welded box sections were investigated in detail. A unified residual stress model for NSS, HSS and HNHSS welded box sections was proposed, and the corresponding simplified prediction equations for the maximum tensile residual stress ratio (${\sigma}_{rt}/f_y$) and average compressive residual stress ratio (${\sigma}_{rc}/f_y$) in the model were quantitatively established. The predicted magnitudes and distributions of residual stresses for four tested sections in this study by using the proposed residual stress model were compared with the experimental results, and the feasibility of this proposed model was shown to be in good agreement.

페로니켈슬래그 미분말 및 혼화재의 복합사용에 따른 모르타르의 강도 및 내구성 평가 (Evaluation of Strength and Durability of Mortar using Ferronickel Slag Powder and Admixtures)

  • 조설아;유정환;박상순
    • 한국건설순환자원학회논문집
    • /
    • 제7권3호
    • /
    • pp.262-270
    • /
    • 2019
  • 본 논문에서는 페로니켈슬래그 미분말 및 혼화재의 복합사용에 따른 모르타르의 강도 및 내구성 평가를 실시하였다. 페로니켈슬래그 및 생석회, 석고, 염화칼슘을 OPC 대비 20%로 치환하여 복합사용 하였으며, 휨강도 및 압축강도, SEM분석을 통한 모르타르의 강도 평가를 실시하였다. 석고를 혼화재로 사용하였을 때 초기강도 발현은 보이지만, 페로니켈슬래그 및 생석회, 염화칼슘을 혼화재로 복합사용 하였을 때 강도발현과 강도증진효과가 극대화 되었으며, 혼화재의 적절한 복합사용이 미세한 공극 채움과 밀도개선효과로 인해 강도와 내구성 개선에 영향을 주는 것으로 판단된다. 또한 화학적침식저항성 및 XRD 분석을 통해 혼화재의 적절한 복합사용은 수화 생성물인 Muscovite의 함량에 따라 강도가 증가하는 경향을 보였고, 규산염은 산 알칼리에는 용해되지 않으므로 화학적 침식 저항 성능이 OPC에 비하여 우수한 것으로 사료된다.

Experimental and numerical investigation on in-plane behaviour of hollow concrete block masonry panels

  • Murthy, A. Rama Chandra;Ganapathi, S. Chitra;Iyer, Nagesh R.;Lakshmanan, N.;Bhagavan, N.G.
    • Computers and Concrete
    • /
    • 제10권1호
    • /
    • pp.1-18
    • /
    • 2012
  • This paper presents the details of studies conducted on hollow concrete block masonry (HCBM) units and wall panels. This study includes, compressive strength of unit block, ungrouted and grouted HCB prisms, flexural strength evaluation, testing of HCBM panels with and without opening. Non-linear finite element (FE) analysis of HCBM panels with and without opening has been carried out by simulating the actual test conditions. Constant vertical load is applied on the top of the wall panel and then lateral load is applied in incremental manner. The in-plane deformation is recorded under each incremental lateral load. Displacement ductility factors and response reduction factors have been evaluated based on experimental results. From the study, it is observed that fully grouted and partially reinforced HCBM panel without opening performed well compared to other types of wall panels in lateral load resistance and displacement ductility. In all the wall panels, shear cracks originated at loading point and moved towards the compression toe of the wall. The force reduction factor of a wall panel with opening is much less when compared with fully reinforced wall panel with no opening. The displacement values obtained by non-linear FE analysis are found to be in good agreement with the corresponding experimental values. The influence of mortar joint has been included in the stress-strain behaviour as a monolith with HCBM and not considered separately. The derived response reduction factors will be useful for the design of reinforced HCBM wall panels subjected to lateral forces generated due to earthquakes.

콘크리트 압축강도에 따른 강관기둥부재의 내화성능에 관한 실험적 연구 (Experimental Study on the Fire Resistance of Concrete Filled Steel Tubes according to Concrete Compressive Strengths)

  • 권인규
    • 한국방재학회 논문집
    • /
    • 제11권2호
    • /
    • pp.1-8
    • /
    • 2011
  • 콘크리트 충전강관기둥부재는 내력 및 내화적 효과가 우수한 것으로 인식되고 있으며, 이에 관련된 연구가 지속되는 추세이다. 콘크리트는 강관내부에 충전, 구속되므로 구조적 성능이 유지되면서 열용량의 효과가 발휘되어야 일정 시간이상의 내화성능이 발현될 것으로 판단된다. 따라서 본 논문의 목적은 21 MPa의 일반 콘크리트와 40 MPa의 고강도 콘크리트의 내화성능에 기여하는 정도를 파악하고, 향후 공학적 내화설계의 기반자료 제공을 위하여 축력비 100%, 80%, 60% 및 50%를 재하하는 내화시험을 수행하여, 강재의 표면온도, 콘크리트의 온도를 측정하였다. 콘크리트가 충전된 강관기둥부재는 30분이상의 내화성능 되지 못하였으며, 이는 콘크리트의 조기 균열에 의한 내력적 성능저하로 판단되었다. 따라서 일정시간 이상의 내화성능 확보는 작용 하중비를 50 %이하로 설정하는 것이 권장되었다.

Mechanical properties and microstructures of stabilised dredged expansive soil from coal mine

  • Chompoorat, Thanakorn;Likitlersuang, Suched;Sitthiawiruth, Suwijuck;Komolvilas, Veerayut;Jamsawang, Pitthaya;Jongpradist, Pornkasem
    • Geomechanics and Engineering
    • /
    • 제25권2호
    • /
    • pp.143-157
    • /
    • 2021
  • Expansive soil is the most predominant geologic hazard which shows a large amount of shrinkage and swelling with changes in their moisture content. This study investigates the macro-mechanical and micro-structural behaviours of dredged natural expansive clay from coal mining treated with ordinary Portland cement or hydrated lime addition. The stabilised expansive soil aims for possible reuse as pavement materials. Mechanical testing determined geotechnical engineering properties, including free swelling potential, California bearing ratio, unconfined compressive strength, resilient modulus, and shear wave velocity. The microstructures of treated soils are observed by scanning electron microscopy, x-ray diffraction, and energy dispersive spectroscopy to understand the behaviour of the expansive clay blended with cement and lime. Test results confirmed that cement and lime are effective agents for improving the swelling behaviour and other engineering properties of natural expansive clay. In general, chemical treatments reduce the swelling and increase the strength and modulus of expansive clay, subjected to chemical content and curing time. Scanning electron microscopy analysis can observe the increase in formation of particle clusters with curing period, and x-ray diffraction patterns display hydration and pozzolanic products from chemical particles. The correlations of mechanical properties and microstructures for chemical stabilised expansive clay are recommended.

고성능 감수제 종류에 따른 섬유보강 무시멘트 복합재료의 인장거동 및 균열 패턴 (Tensile Behavior and Cracking Patterns of Fiber-Reinforced Cementless Composites According to Types of Superplasticizers)

  • 박세언;최정일;김윤용;이방연
    • 한국건설순환자원학회논문집
    • /
    • 제9권2호
    • /
    • pp.200-207
    • /
    • 2021
  • 이 연구의 목적은 고성능 감수제의 종류가 알칼리활성 슬래그 기반 무시멘트 복합재료의 인장거동과 균열패턴에 미치는 영향을 실험적으로 조사하는 것이다. 이를 위하여 고성능 감수제 종류에 따라 3종류의 배합을 준비하였고, 압축강도 및 인장실험을 수행하였다. 실험결과 혼합 후 굳기 전에 섬유뭉침이나 섬유의 쏠림이 없었지만 고성능 감수제의 종류에 따라 복합재료의 인장강도, 인장변형성능, 그리고 인성은 최대 28.1%, 39.1%, 66.2% 차이가 나는 것으로 나타났다. 또한 고성능 감수제는 균열개수와 최대 섬유 가교 응력에 영향을 주는 것으로 나타났다.

Solidification of high level waste using magnesium potassium phosphate compound

  • Vinokurov, Sergey E.;Kulikova, Svetlana A.;Myasoedov, Boris F.
    • Nuclear Engineering and Technology
    • /
    • 제51권3호
    • /
    • pp.755-760
    • /
    • 2019
  • Compound samples based on the mineral-like magnesium potassium phosphate matrix $MgKPO_4{\times}6H_2O$ were synthesized by solidification of high level waste surrogate. Phase composition and structure of synthesized samples were studied by XRD and SEM methods. Compressive strength of the compounds is $12{\pm}3MPa$. Coefficient of thermal expansion of the samples in the range $250-550^{\circ}C$ is $(11.6{\pm}0.3){\times}10^{-6}1/^{\circ}C$, and coefficient of thermal conductivity in the range $20-500^{\circ}C$ is $0.5W/(m{\times}K)$. Differential leaching rate of elements from the compound, $g/(cm^2{\times}day)$: $Mg-6.7{\times}10^{-6}$, $K-3.0{\times}10^{-4}$, $P-1.2{\times}10^{-4}$, $^{137}Cs-4.6{\times}10^{-7}$; $^{90}Sr-9.6{\times}10^{-7}$; $^{239}Pu-3.7{\times}10^{-9}$, $^{241}Am-9.6{\times}10^{-10}$. Leaching mechanism of radionuclides from the samples at the first 1-2 weeks of the leaching test is determined by dissolution ($^{137}Cs$), wash off ($^{90}Sr$) or diffusion ($^{239}Pu$ and $^{241}Am$) from the compound surface, and when the tests continue to 90-91 days - by surface layer depletion of compound. Since the composition and physico-chemical properties of the compound after irradiation with an electron beam (absorbed dose of 1 MGy) are constant the radiation resistance of compound was established.

잔골재 종류 및 치환율에 의한 속경성 폴리머 모르타르의 재료 특성 (Material Properties of Fast hardening Polymer Mortar by Fine Aggregate Types and Replacement Ratio)

  • 신승봉;김규용;남정수;신경수;이보경
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제23권4호
    • /
    • pp.145-151
    • /
    • 2019
  • 급속공사 현장에 사용되는 속경성 보수모르타르의 내구성능 증진을 위해 사용재료의 물리적 성능을 평가하였다. 이를 위해 염화물 확산 억제 성능을 보유한 페로니켈 수쇄슬래그 잔골재와 급결제, EVA계 폴리머를 모르타르에 치환시켜 급결성능과 기초적 성능을 평가하였다. 그 결과 FNS잔골재 및 RS잔골재 사용에 따른 압축강도, 휨강도, 부착강도가 증가되었다. 속경성 폴리머 모르타르의 염화물 이온 촉진시험의 결과 FNS를 50%이하 사용 시 재령 7일에서 재령 28일간 염화물 억제 성능이 유지되었으며, FNS잔골재 및 RS잔골재 사용에 따른 내구성 저하는 발견되지 않았으나, 건축 및 토목용 대체골재로 사용하는데 경제성 및 장기 내구성에 대한 추가 검토가 필요할 것으로 판단된다.

Numerical simulation and analytical assessment of STCC columns filled with UHPC and UHPFRC

  • Nguyen, Chau V.;Le, An H.;Thai, Duc-Kien
    • Structural Engineering and Mechanics
    • /
    • 제70권1호
    • /
    • pp.13-31
    • /
    • 2019
  • A nonlinear finite element model (FEM) using ATENA-3D software to simulate the axially compressive behavior of circular steel tube confined concrete (CSTCC) columns infilled with ultra high performance concrete (UHPC) was presented in this paper. Some modifications to the material type "CC3DNonlinCementitious2User" of UHPC without and with the incorporation of steel fibers (UHPFRC) in compression and tension were adopted in FEM. The predictions of utimate strength and axial load versus axial strain curves obtained from FEM were in a good agreement with the test results of eighteen tested columns. Based on the results of FEM, the load distribution on the steel tube and the concrete core was derived for each modeled column. Furthermore, the effect of bonding between the steel tube and the concrete core was clarified by the change of friction coefficient in the material type "CC3DInterface" in FEM. The numerical results revealed that the increase in the friction coefficient leads to a greater contribution from the steel tube, a decrease in the ultimate load and an increase in the magnitude of the loss of load capacity. By comparing the results of FEM with experimental results, the appropriate friction coefficient between the steel tube and the concrete core was defined as 0.3 to 0.6. In addition to the numerical evaluation, eighteen analytical models for confined concrete in the literature were used to predict the peak confined strength to assess their suitability. To cope with CSTCC stub and intermediate columns, the equations for estimating the lateral confining stress and the equations for considering the slenderness in the selected models were proposed. It was found that all selected models except for EC2 (2004) gave a very good prediction. Among them, the model of Bing et al. (2001) was the best predictor.