Browse > Article
http://dx.doi.org/10.1016/j.net.2018.12.009

Solidification of high level waste using magnesium potassium phosphate compound  

Vinokurov, Sergey E. (Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences)
Kulikova, Svetlana A. (Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences)
Myasoedov, Boris F. (Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences)
Publication Information
Nuclear Engineering and Technology / v.51, no.3, 2019 , pp. 755-760 More about this Journal
Abstract
Compound samples based on the mineral-like magnesium potassium phosphate matrix $MgKPO_4{\times}6H_2O$ were synthesized by solidification of high level waste surrogate. Phase composition and structure of synthesized samples were studied by XRD and SEM methods. Compressive strength of the compounds is $12{\pm}3MPa$. Coefficient of thermal expansion of the samples in the range $250-550^{\circ}C$ is $(11.6{\pm}0.3){\times}10^{-6}1/^{\circ}C$, and coefficient of thermal conductivity in the range $20-500^{\circ}C$ is $0.5W/(m{\times}K)$. Differential leaching rate of elements from the compound, $g/(cm^2{\times}day)$: $Mg-6.7{\times}10^{-6}$, $K-3.0{\times}10^{-4}$, $P-1.2{\times}10^{-4}$, $^{137}Cs-4.6{\times}10^{-7}$; $^{90}Sr-9.6{\times}10^{-7}$; $^{239}Pu-3.7{\times}10^{-9}$, $^{241}Am-9.6{\times}10^{-10}$. Leaching mechanism of radionuclides from the samples at the first 1-2 weeks of the leaching test is determined by dissolution ($^{137}Cs$), wash off ($^{90}Sr$) or diffusion ($^{239}Pu$ and $^{241}Am$) from the compound surface, and when the tests continue to 90-91 days - by surface layer depletion of compound. Since the composition and physico-chemical properties of the compound after irradiation with an electron beam (absorbed dose of 1 MGy) are constant the radiation resistance of compound was established.
Keywords
Magnesium potassium phosphate; compound; High level waste; Immobilization; Leaching rate; Leaching mechanism; Radiation resistance;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S.V. Stefanovsky, S.V. Yudintsev, S.E. Vinokurov, B.F. Myasoedov, Chemicaltechnological and mineralogical-geochemical aspects of the radioactive waste management, Geochem. Int. 54 (2016) 1136-1156.   DOI
2 H. Schlenz, S. Neumeier, A. Hirsch, L. Peters, G. Roth, Phosphates as safe containers for radionuclides, in: S. Heuss-Assbichler, G. Amthauer, M. John (Eds.), Highlights in Applied Mineralogy, De Gruyter, Munich, Germany, 2017, pp. 171-196. ISBN 9783110497342.
3 A.S. Wagh, Chemically Bonded Phosphate Ceramics: Twenty-first Century Materials with Diverse Applications, second ed., Elsevier, Amsterdam, Netherlands, 2016, pp. 1-422. ISBN 978-0-08-100380-0.
4 A.S. Wagh, S.Y. Sayenko, V.A. Shkuropatenko, R.V. Tarasov, M.P. Dykiy, Y.O. Svitlychniy, V.D. Virych, E.A. Ulybkina, Experimental study on cesium immobilization in struvite structures, J. Hazard Mater. 302 (2016) 241-249.   DOI
5 A.S. Wagh, M.D. Maloney, Method of waste stabilization with dewatered chemically bonded phosphate ceramics, US Patent No 7 (745) (2010) 679.
6 J. Torras, I. Buj, M. Rovira, J. de Pablo, Semi-dynamic leaching tests of nickel containing wastes stabilized/solidified with magnesium potassium phosphate cements, J. Hazard Mater. 186 (2011) 1954-1960.   DOI
7 S.E. Vinokurov, S.A. Kulikova, V.V. Krupskaya, B.F. Myasoedov, Magnesium potassium phosphate matrix for solidifcation of intermediate level waste containing actinides and ammonium nitrate, Radioactive Waste 2 (3) (2018) 105-113.
8 A.V. Dmitrieva, M.Yu Kalenova, S.A. Kulikova, I.V. Kuznetsov, A.M. Koshcheev, S.E. Vinokurov, Magnesium-potassium phosphate matrix for immobilization of $^{14}C$, Russ. J. Appl. Chem. 91 (4) (2018) 641-646.   DOI
9 S.E. Vinokurov, S.A. Kulikova, V.V. Krupskaya, S.S. Danilov, I.N. Gromyak, B.F. Myasoedov, Investigation of the leaching behavior of components of the magnesium potassium phosphate matrix after high salt radioactive waste immobilization, J. Radioanal. Nucl. Chem. 315 (2018) 481-486.   DOI
10 S.E. Vinokurov, S.A. Kulikova, V.V. Krupskaya, B.F. Myasoedov, Magnesium potassium phosphate compound for radioactive waste immobilization: phase composition, structure, and physicochemical and hydrolytic durability, Radiochemistry 60 (2018) 70-78.   DOI
11 B.F. Myasoedov, S.N. Kalmykov, Y.M. Kulyako, S.E. Vinokurov, Nuclear fuel cycle and its impact on the environment, Geochem. Int. 54 (2016) 1156-1167.   DOI
12 V.A. Shkuropatenko, High level wastes immobilization in ceramic and hydrated phosphate matrix, East Eur. J. Phys. 3 (1) (2016) 49-60.
13 S.E. Vinokurov, Y.M. Kulyako, O.M. Slyunchev, S.I. Rovny, B.F. Myasoedov, Low-temperature immobilization of actinides and other components of highlevel waste in magnesium potassium phosphate matrices, J. Nucl. Mater. 385 (2009) 189-192.   DOI
14 S.E. Vinokurov, S.A. Kulikova, B.F. Myasoedov, Magnesium potassium phosphate compound for immobilization of radioactive waste containing actinide and rare earth elements, Materials 11 (2018) 976, https://doi.org/10.3390/ma11060976.   DOI
15 S.Yu Sayenko, V.A. Shkuropatenko, N.P. Dikiy, R.V. Tarasov, K.A. Ulybkina, O.Y. Surkov, L.M. Litvinenko, Clinoptilolite with cesium immobilization to potassium magnesium phosphate matrix, East Eur. J. Phys. 4 (2) (2017) 37-43.
16 S.E. Vinokurov, Y.M. Kulyako, O.M. Slyunchev, S.I. Rovnyi, A.S. Wagh, M.D. Maloney, B.F. Myasoedov, Magnesium potassium phosphate matrices for immobilization of high-level liquid wastes, Radiochemistry 51 (2009) 65-72.   DOI
17 D. Singh, V.R. Mandalika, S.J. Parulekar, A.S. Wagh, Magnesium potassium phosphate ceramic for $^{99}Tc$ immobilization, J. Nucl. Mater. 348 (2006) 272-282.   DOI
18 S. Graeser, W. Postl, H.-P. Bojar, P. Berlepsch, T. Armbruster, T. Raber, K. Ettinger, F. Walter, Struvite-(K), $KM_gPO_4{\cdot}6H_2O$, the potassium equivalent of struvite e a new mineral, Eur. J. Mineral. 20 (2008) 629-633.   DOI
19 NP-019-15. Federalnyye Normy I Pravila V Oblasti Ispolzovaniya Atomnoy Energii Sbor, Pererabotka, Khraneniye I Konditsionirovaniye Zhidkikh Radioaktivnykh Otkhodov. Trebovaniya bezopasnosti.
20 GOST R 52126-2003, Long Time Leach Testing of Solidified Radioactive Waste Forms, Gosstandart of Russia, Moscow, Russia, 2003, pp. 1-8.
21 R. Malviya, R. Chaundhary, Leaching behavior and immobilization of heavy metals in solidified/stabilized products, J. Hazard Mater. B137 (2006) 207-217.   DOI
22 G.J. De Groot, H.A. van der Sloot, Determination of leaching characteristics of waste materials leading to environmental product certification, in: T.M. Gilliam, C.C. Wiles (Eds.), Stabilization and Solidification of Hazardous, Radioactive and Mixed Wastes: 2nd Volume, vol. 2, ASTM International, West Conshohocken, PA, USA, 1992, pp. 149-170.