• Title/Summary/Keyword: Compressive strengths

Search Result 942, Processing Time 0.032 seconds

An Experimental Study on the Effects of Early-Age Vibrations on the Properties of Concrete (진동이 양생중인 콘크리트에 미치는 영향에 관한 연구)

  • 오병환;송혜금;조재열
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.531-537
    • /
    • 1998
  • Recently, the pile driving or blasting works are increasingly done in many areas to perform large scale construction projects. The vibrations from these blasting works may affect the properties of concrete, especially young concrete. The purpose of present study is to explore the effects of vibration at early ages on the properties of concrete. To this end, comprehensive experimental study is conducted in the present study. The major test variables are peak particle velocity or vibration velocity and the age at vibration. The compressive strengths and bond strengths are measured for all the specimens at 28days after casting. The duration of vibration is fixed to 30 minutes for all cases. The results indicate that the strength increases for vibration velocity less than about 0.25cm/sec and decreases for vibration velocity larger than 0.5cm/sec. The effect of age at vibration is not pronounced and shows almost similar behavior for the age at vibration of 0 to 12 hours range. The present study provides some important guidelines to control the construction or vehicle vibrations for the concrete at very early ages.

  • PDF

An Experimental Research on the Confinement Effect of Concrete Specimens with Spirals (나선근에 의한 콘크리트의 횡보강 효과에 관한 실험적 연구)

  • 김진근;박찬규
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.2
    • /
    • pp.146-154
    • /
    • 1995
  • I n this paper, an experimental research was carried out to investigate the confinement effect of spiral reinforcements in concrete column specimens subjected to t.he concentric axial corn pressive loads. Main variables were the compressive strengths of concrete of 27.2, 62.4 and 81.2 MPa, and the spacings of spirals of 120, 60, 40, 30, 25 and 20mm. and the yield strengths of spir als of 451 and 1375MPa, respectively. For the same volumetric ratio and yield strength of spir als, it was shown that the strength increment of confined concrete was almost same regardless of the strength of unconfined concrete, however, the axial stram at maximum stress was decreas ed with increasing of the compressive strength of unconfined concrete.

Development of Thixotropic Inorganic-Type Grout and Its Engineering Characteristics (무기계 가소성 그라우트의 개발 및 공학적 특성)

  • Jeong, Gyeong-Hwan;Shin, Min-Sik;Kim, Dong-Hae;Noh, Jin-Teck;Jung, Duh-Woe
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.725-733
    • /
    • 2008
  • A thixotropic grout has been developed for the use of filling a tail void in the shield TBM and as well as various ground voids. The grout developed in this study is a mixture of inorganic substance, cement and some functional additives. Its engineering characteristics was investigated by measuring a viscosity and unconfined compressive strengths. The optimum mix proportion for an effective thixotropic grout was proposed through several repeated laboratory tests. The various physical properties such as thixotropy, unconfined compressive strengths, and durability of the thixotropic grout and the gels produced from the grout were compared with those of the well-known waterglass-type grout such as L.W.. The thixotropic grout developed in the study exhibited an excellent performance for back-filling of tail voids in the shield TBM based on experimental results compared to the existing waterglass grout.

  • PDF

Compression Splice Length in Concrete of 40 and 60 MPa Compressive Strengths (40, 60MPa 압축강도 콘크리트에서 철근 압축이음 길이)

  • Chun, Sung-Chul;Lee, Sung-Ho;Oh, Bo-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.571-572
    • /
    • 2009
  • Current design codes regarding compression lap splice dose not utilize merits of the improved strength of ultra-high strength concrete. Especially, a compression lap splice can be calculated longer than a tension lap splice according to the codes because they do not consider effects of strength of concrete and transverse reinforcement. Design equation is proposed for compression lap splice in 40 to 70 MPa of compressive strength of concrete. The proposed equation is based on 51 specimens. Through two-variable non-linear regression analysis of measured splice strengths, a splice strength equation is derived, which is converted into a splice length equation.

  • PDF

Development and Characteristics of Thixotropic Grout based on Colloidal Silica (실리카 콜로이드를 이용한 가소성 그라우트의 개발 및 공학적 특성)

  • Ryu, Dong-Sung;Jeong, Gyeong-Hwan;Shin, Min-Sik;Kim, Dong-Hae;Lee, Jun-Seok;Jung, Du-Hwoe
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1283-1290
    • /
    • 2005
  • A thixotropic grout has been newly developed for the use of back-filling a tail void in the shield tunnel and filling up ground voids. The grout developed in the study is a mixture of colloidal silica, cement and some functional additives. Its engineering characteristics was investigated by measuring a viscosity and unconfined compressive strengths. The optimum mixing proportion for an effective thixotropic grout was proposed through several repeated laboratory tests. The various physical properties such as thixotropy, unconfined compressive strengths, and durability of the thixotropic grout and the gels produced from the grout were compared with those of the well-known waterglass grout such as L.W.. The thixotropic grout developed in the study exhibited an excellent performance for back-filling of tail voids, based on experimental results compared to the existing waterglass grout.

  • PDF

Consolidation of Incineration Fly Ash by Solvothermal Reaction

  • Masuda, Kaoru;Endoh, Shigehisa
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.655-658
    • /
    • 2001
  • The generation of fly ash tends to increase yearly so that this is currently considered a big environmental concern, which requires appropriate treatment approaches. In this research the consolidation of incineration fly ash by the hot-press solvothermal reaction was investigated to provide an alternative process for the treatment and utilization of this waste material. Results showed that at reaction conditions of 52 K treatment, 20 ㎫ pressure and 60 minutes treatment time, the resulting consolidate exhibited a compressive ness strengths of 37-40 ㎫, a tensile strength of 6.5-7.0 ㎫ and a Rockwell hardness of 20-23 RH15W. These properties are comparable to the compressive ness strength of Portland cement which ranges from 30-40 ㎫ as well as with the tensile strengths of mortar, ganite, artificial lightweight aggregate and solidified high connote whose values are 2-2.5 ㎫, 5-9 ㎫, 5-10 ㎫ and 3-5 ㎫ respectively- Furthermore, by mixing fly ash with glass at 50% ratio and then subjecting to similar treatment conditions, a consolidate with even higher tensile strength of 12.5-13.3 ㎫ and hardness of 77-80 RH15W may be achieved.

  • PDF

A Comparative Analysis of Sea Ice Material Properties in the Amundsen Sea, Antarctica (남극 아문젠해에서 계측된 해빙의 재료특성 비교 분석)

  • Choi, Kyungsik;Kim, Hyun Soo;Ha, Jung Seok;Lee, Chun-Ju
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.3
    • /
    • pp.254-258
    • /
    • 2014
  • Field trial in ice-covered sea is one of the most important tasks in the design of icebreaking ships. To correctly estimate ice load and ice resistance on ship's hull, It is essential to understand the material properties of sea ice during ice field trials and to perform the proper experimental procedure by gathering sea ice data. A measurement of sea ice properties was conducted during February and March of 2012 with the Korean Icebreaking research vessel "ARAON" in the Amundsen Sea, Antarctica. This paper describes a test procedure to obtain sea ice data which provide basic information to estimate ice loads and icebreaking performance of the ship. The data gathered from sea ice field trials during the 2012 Antarctic voyage of the ARAON includes ice temperature/salinity/density and the compressive/flexural strength of sea ice. This paper analyses the gathered Antarctic sea ice material properties comparing with the previous data obtained during ARAON's Arctic and Antarctic voyages in 2010.

Effect of one way reinforced concrete slab characteristics on structural response under blast loading

  • Kee, Jung Hun;Park, Jong Yil;Seong, Joo Hyun
    • Advances in concrete construction
    • /
    • v.8 no.4
    • /
    • pp.277-283
    • /
    • 2019
  • In evaluating explosion-protection capacity, safety distance is broadly accepted as the distance at which detonation of a given explosive causes acceptable structural damage. Safety distance can be calculated based on structural response under blast loading and damage criteria. For the applicability of the safety distance, the minimum required stand-off distance should be given when the explosive size is assumed. However, because of the nature of structures, structural details and material characteristics differ, which requires sensitivity analysis of the safety distance. This study examines the safety-distance sensitivity from structural and material property variations. For the safety-distance calculation, a blast analysis module based on the Kingery and Bulmash formula, a structural response module based on a Single Degree of Freedom model, and damage criteria based on a support rotation angle were prepared. Sensitivity analysis was conducted for the Reinforced Concrete one-way slab with different thicknesses, reinforcement ratios, reinforcement yield strengths, and concrete compressive strengths. It was shown that slab thickness has the most significant influence on both inertial force and flexure resistance, but the compressive strength of the concrete is not relevant.

Fabrication, Microstructures and High-Strain-Rate Properties of TiC-Reinforced Titanium Matrix Composites

  • 신현호;박홍래;장순남
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.259-259
    • /
    • 1999
  • TiC ceramic particulate-reinforced titanium matrix composites were fabricated and the resultant densification, microstructure, and static and dynamic mechanical properties were studied. Comparing Ti with TiH₂powders as host materials for TiC ceramic reinforcement by pressureless vacuum sintering, TiH₂-started composites showed better sinterability and resistance to both elastic and plastic deformation than Ti-started ones. When TiH₂and TiH₂-45 vol.%TiC samples were hot pressed, TiH₂matrices transformed to alpha prime Ti and alpha Ti phase, respectively. It is interpreted that the diffusion of an alpha stabilizer carbon from TiC into the matrix is one of the plausible reasons far such a microstructural difference. The 0.2% offset yield strengths of the hot pressed TiH₂and TiH₂-45 vol.%TiC samples were 1008 and 1446 MPa, respectively, in a static compressive mode (strain rate of 1×$10^{-3}$/s). Dynamic compressive strengths of the samples were 1600 and 2060 MPa, respectively, at a strain rate of 4×10³/s.

Development of Polymer-Concrete Composite(I) - Physical Properties of Polymer-Cement Concrete Composites - (폴리머-콘크리트 복합재료 개발(I) - 폴리머-시멘트 콘크리트의 물성 -)

  • Hwang, Eui-Hwan;Kil, Deog-Soo;Oh, In-Seok
    • Applied Chemistry for Engineering
    • /
    • v.8 no.6
    • /
    • pp.979-984
    • /
    • 1997
  • Test specimens of polymer-cement concrete composites were prepared using styrene-butadiene rubber(SBR) latex, ethylenevinyl acetate(EVA) and polyacrylic ester(PAE) emulsions as polymer dispersions in cement modified system at constant slump($10{\pm}0.5cm$), then compressive and flexural strengths water absorption, pore size distribution, and microstructures were investigated. Compressive and flexural strengths of these composites were remarkably improved with an increase of polymer-cement ratio. These composites had a desirable pore size distribution against frost damage due to a small capillary pore volume. Continuous polymer film was able to form in higher than 15% of polymer cement ratio.

  • PDF