• 제목/요약/키워드: Compressive strengths

검색결과 931건 처리시간 0.025초

복합적층 원통판넬의 좌굴후 압축강도 (Postbuckling Compressive Strengths of Composite Laminated Cylindrical Panels)

  • 권진희;홍창선
    • 대한기계학회논문집
    • /
    • 제18권4호
    • /
    • pp.958-966
    • /
    • 1994
  • The postbuckling compressive strengths of $[0/90/\pm\theta]_s$ composite laminated cylindrical panels with various fiber angles and width-to-length ratios are characterized by the nonlinear finite element method. For the iteration and load-increment along the postbuckling equilibrium path a modified arc-length method in which the effect of failure can be considered is introduced. In the progressive failure analysis the maximum stress criterion and complete unloading model are used. Present finite element results show good agreement with experiments for $[0_3/90]_s$ cylindrical panel and $[0/\pm45/90/]_s$ plate. The postbuckling compressive strength of $[0/90/\pm\theta]_s$ composite laminated cylindrical panel is independent of the initial buckling stress but high in the panel with large value of the bending stiffness in axial direction. In the several cylindrical panels, it is observed that the prebuckling compressive failures occur and result into the collapse before the buckling.

무령왕릉에 사용된 전돌과 재현 전돌의 재료학적 특성 (Material Characteristics of Traditional Bricks used in the Royal Tomb of King Muryeong, Gongju, Korea and Its Reproduction Bricks)

  • 권양희;홍성걸
    • 보존과학회지
    • /
    • 제30권3호
    • /
    • pp.287-298
    • /
    • 2014
  • 이 연구에서는 무령왕릉에 사용된 전돌의 재료 특성에 관하여 고찰하였다. 압축 강도, 열전도도, 흡수율 등의 재료 특성은 비파괴 실험으로 측정하였다. 그 중에서 무령왕릉 전돌의 압축강도는 초음파 측정법과 흡수율을 이용하여 추정하였다. 실험 결과, 초음파 속도를 이용한 압축강도는 표면이 고르지 못하고 두께 편차가 큰 문화재 시편 특성상 표준편차가 크게 나타났다. 그러나 흡수율을 적용한 압축강도 값 (28.69 MPa ~ 33.19 MPa)은 일반 콘크리트의 압축강도 수준으로 편차가 낮게 나타났다. 따라서 초음파 속도를 이용하는 방법보다 흡수율을 이용하는 방법이 무령왕릉 전돌의 압축강도 예측법으로 보다 적합한 것으로 판단된다. 무령왕릉 전돌의 열전도도는 시료의 표면상태와 두께에 영향을 받지 않는 Mathis TCi를 이용하여 측정하였으며, 평균 1.58 W/mK로 흙에 근접한 값을 지닌다. 무령왕릉 전돌의 흡수율과 수분 잔류율은 각각 1.6 % ~ 15 %, 0 % ~ 0.7 %의 범위를 나타냈다.

에폭시수지 혼입 폴리머 시멘트 모르타르의 강도증진방안 (Strength Improvement of Polymer-Modified Mortars Using Epoxy Resin)

  • 김완기;조영국
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.465-468
    • /
    • 2006
  • This paper investigates the effect of curing conditions on the strength improvement of polymer-modified mortars using epoxy resin with various curing methods. The polymer-modified mortars using epoxy resin are prepared with various polymer-cement ratios, and subjected to standard, hot water, heat cure and autoclave cures. The epoxy-modified mortars are tested for flexural and compressive strengths at desired curing methods. From the test results, the flexural and compressive strengths of the epoxy-modified mortars are hardly improved by the autoclave and hot water cures compared to the ideal cure of $20^{\circ}C$. Among the four types of curing methods, the strengths of the heat cured epoxy-modified mortars is largely improved. Especially, it is obtained in the mortars sealed with PVDC film.

  • PDF

순환골재 사용에 따른 도로포장용 투수성 콘크리트의 공학적 특성 (Engineering Characteristics of Permeability Concrete for Road Pavement by Recycled Aggregates)

  • 김영철;손호정;이용길;권춘우;공태웅;유성룡
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2013년도 춘계 학술논문 발표대회
    • /
    • pp.229-231
    • /
    • 2013
  • In this study, the qualitative characteristics of the permeability concrete by the changes in the grading of the recycled aggregates were analyzed and its results are as follows. First, the compressive strength represented the low range of strengths comparing with the typical concrete, and the high compressive strengths were represented as the aggregates with small grading of 2.5mm were used. The bending strengths did not satisfy the targeted range, and the permeability coefficient represented to be good when the aggregates with single grading greater than 5.0mm and the mixed aggregates of 5.0mm with 10.0mm.

  • PDF

프리캐스트 콘크리트와 현장타설 콘크리트 복합 보의 전단강도 (Shear Strength of Hybrid Beams Combining Precast Concrete and Cast-In-Place Concrete)

  • 김철구;박홍근;홍건호;강수민
    • 콘크리트학회논문집
    • /
    • 제25권2호
    • /
    • pp.175-185
    • /
    • 2013
  • 최근 다른 압축강도로 타설된 프리캐스트 콘크리트(PC)와 현장타설 콘크리트(CIP)의 복합 부재의 사용이 증가하고 있지만 현행 기준에는 서로 다른 강도로 복합화된 부재의 전단강도에 대한 설계 기준이 없다. 그래서 이번 연구에서 서로 다른 압축강도(24 MPa, 60 MPa)로 분리 타설된 보의 전단강도 실험을 수행하여 복합 부재의 전단강도에 대해 알아보았다. 변수로는 단면형상, 휨철근비, 그리고 전단경간비를 고려하였다. 실험 결과 값과 현행 전단 기준식과 단면적비로 계산한 유효 콘크리트 강도를 이용한 예측 값을 비교하였다. 실험 결과를 분석해보면 철근비가 낮고 압축대에 60 MPa가 사용된 실험체들에 대해 설계 기준식을 과대평가하였다. 실험 결과를 기준으로 PC와 CIP 복합부재의 전단설계 기준을 제안하였다.

Durability properties of concrete containing metakaolin

  • Nas, Memduh;Kurbetci, Sirin
    • Advances in concrete construction
    • /
    • 제6권2호
    • /
    • pp.159-175
    • /
    • 2018
  • The main aim of this study is to investigate the possible effects of metakaolin on strength and durability properties of concrete. For this purpose, concrete mixtures are produced by substituting cement with metakaolin 0, 5, 10 and 20% by weight. The amount of binder for the concrete mixtures are 300 and $400kg/m^3$ with a constant water to cement ratio of 0.6. Compressive and bending strengths, freeze-thaw and high-temperature resistances, capillary coefficients and rapid chloride permeability properties were determined and compared each other. Because of all the experiments conducted, it has been found that the use of metakaolin as a pozzolanic additive in concrete have positive effects especially on compressive and bending strengths, capillary, rapid chloride permeability, freeze-thaw resistance, and high temperatures, up to $800^{\circ}C$. The results indicated that the performance of concrete can be enhanced by metakaolin. Particularly, compressive strength and durability properties have found to be improved with increasing metakaolin content which is attributed to pozzolanic activity and filler effect. Furthermore, metakaolin has relatively positive impacts under elevated temperatures and freeze-thaw effects. However, almost all the strengths of entire concrete specimens are lost at $800^{\circ}C$. Consequently, the optimum metakaolin substitution ratio can be suggested to be 20% as per this study.

기공형성제 크기와 함량이 다공질 지르코니아 세라믹스의 가공율과 강도에 미치는 영향 (Effects of Template Size and Content on Porosity and Strength of Macroporous Zirconia Ceramics)

  • 채수호;김영욱;송인혁;김해두;배지수
    • 한국세라믹학회지
    • /
    • 제46권1호
    • /
    • pp.35-40
    • /
    • 2009
  • Using zirconia and poly (methyl methacrylate-coethylene glycol dimethacrylate) (PMMA) microbeads, macroporous zirconia ceramics were fabricated by a simple pressing method. Effects of template size and content on microstructure, porosity, and flexural and compressive strengths were investigated in the processing of the macroporous zirconia ceramics. Three different sizes of microbeads (8, 20, and $50{\mu}m$) were used as a template for fabricating the macroporous ceramics. The porosity increased with increasing the template size at the same template content. The flexural and compressive strengths were primarily influenced by the porosity rather than the template size. However, the strengths increased with decreasing the template size at the same porosity. By controlling the template size and content, it was possible to produce macroporous zirconia ceramics with porosities ranging from 58% to 75%. Typical flexural and compressive strength values at 60% porosity were ${\sim}30\;MPa$ and ${\sim}75\;MPa$, respectively.

Revision on Material Strength of Steel Fiber-Reinforced Concrete

  • Karl, Kyoung-Wan;Lee, Deuck-Hang;Hwang, Jin-Ha;Kim, Kang-Su;Choi, Il-Sup
    • International Journal of Concrete Structures and Materials
    • /
    • 제5권2호
    • /
    • pp.87-96
    • /
    • 2011
  • Many studies have been performed on steel fiber-reinforced normal/high-strength concrete (SFRC, SFRHC) for years, which is to improve some of the weak material properties of concrete. Most of equations for material strengths of SFRHC, however, were proposed based on relatively limited test results. In this research, therefore, the material test results of SFR(H)C were extensively collected from literature, and material tests have conducted on SFR(H)C; compressive strength tests, splitting tensile tests, and modulus of rupture tests. Based on the extensive test data obtained from previous studies and this research, a database of SFR(H)C material strengths has been established, and improved equations for material strengths of SFR(H)C were also proposed. Test results showed that both the splitting tensile strength and the modulus of rupture of SFR(H)C increased as the volume fraction of steel fiber increased, while the effect of the steel fiber volume fraction on the compressive strength of SFR(H)C were not clearly observed. The proposed equations for the splitting tensile strength and the modulus of rupture of SFR(H)C showed better results than the previous equations examined in this study in terms of not only accuracy but also safety/reliability.

고압분사공법에 의한 지반개량에 관한 연구 (A Study on Soil Improvement by Using High Pressure Grouting)

  • 유장현;조남준
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.998-1004
    • /
    • 2005
  • U.J.S.(Ultra Jetting System) is a new ground improvement method registered as a Utility Model No.0205798, which has fundamentally improved the existing jetting method of J.S.P.(Jumbo Special Pattern System). In this study, the uniaxial compressive strengths of improved soil-grout structures by U.J.S. and J.S.P. which have been conducted on the construction site are compared. Also, the differences between the U.J.S. and J.S.P. are analyzed by considering the role of the auger bit, the injection distance measured from the axis of boring tubes, and angle of injection measured from the horizontal. The specimens of soil-grout structures are taken from the improved soils by using the U.J.S. and J.S.P. The uniaxial tests for the samples are conducted after the curing period of 28 days. The uniaxial compressive strengths and the coefficients of elasticity of surface and distance from the axis of boring. This study shows that the mean strength of the improved structure by J.S.P. is 1.9 times greater than by J.S.P.

  • PDF

Prediction of Hybrid fibre-added concrete strength using artificial neural networks

  • Demir, Ali
    • Computers and Concrete
    • /
    • 제15권4호
    • /
    • pp.503-514
    • /
    • 2015
  • Fibre-added concretes are frequently used in large site applications such as slab and airports as well as in bearing system elements or prefabricated elements. It is very difficult to determine the mechanical properties of the fibre-added concretes by experimental methods in situ. The purpose of this study is to develop an artificial neural network (ANN) model in order to predict the compressive and bending strengths of hybrid fibre-added and non-added concretes. The strengths have been predicted by means of the data that has been obtained from destructive (DT) and non-destructive tests (NDT) on the samples. NDTs are ultrasonic pulse velocity (UPV) and Rebound Hammer Tests (RH). 105 pieces of cylinder samples with a dimension of $150{\times}300mm$, 105 pieces of bending samples with a dimension of $100{\times}100{\times}400mm$ have been manufactured. The first set has been manufactured without fibre addition, the second set with the addition of %0.5 polypropylene and %0.5 steel fibre in terms of volume, and the third set with the addition of %0.5 polypropylene, %1 steel fibre. The water/cement (w/c) ratio of samples parametrically varies between 0.3-0.9. The experimentally measured compressive and bending strengths have been compared with predicted results by use of ANN method.