• Title/Summary/Keyword: Compressive load support

Search Result 54, Processing Time 0.021 seconds

A study on the strength Change of Used Pipe Support (재사용 파이프서포트의 내력변화 연구)

  • Baek, Sin-Won;Choe, Sun-Ju
    • Journal of the Korea Construction Safety Engineering Association
    • /
    • s.38
    • /
    • pp.79-87
    • /
    • 2006
  • Formwork is a temporary structure that supports its weight and that of freshly placed concrete as well as construction live loads. In constructions site, pipe supports are usually used as shores which are consisted of the stab formwork. The strength of a pipe support is decreasing as it is frequently being used at the construction site. Among the accidents and failures that occur during concrete construction, there are many formwork failures which usually happen at the time concrete is being placed. The objective of this study is to find out the strength change of used pipe support and unused pipe supports according to aging. In this study, 2857 pipe supports were prepared. Among these pipe supports, 2337 pipe supports were lent to the construction companies free of charge. 520 pipe supports were kept on the outside. Compressive strength was measured by knife edge test and plate test at each 3 month. Test results show that the strength of unused pipe supports as well as used pipe supports was decreasing according to age, use frequency and load carrier, and the strength of used pipe supports was lower than the strength of unused pipe supports at the same age. So, the strength of used pipe supports from 191 days to present day was not satisfied the specification of KSF 8001. In this study, the strength of pipe support according to age, use frequency and load carrier was predicted using SPSS 12.0. It was known that the strength of pipe support using for 5 years was reduced to 42.8%. According to these results, it shows that attention has to be paid to formwork design using used pipe supports. Therefore, the present study results will be able to provide a firm base to prevent formwork collapses.

  • PDF

An Evaluation of Structural Test and Analysis for Composites Vehicle Structures of Automatic Guideway Transit (자동무인경전철 복합재 차체 구조물의 구조 시험 및 해석적 평가)

  • Ko, Hee-Young;Shin, Kwang-Bok;Cho, Se-Hyun;Kim, Dae-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1103-1108
    • /
    • 2009
  • This paper describes the results of structural test and finite element analysis for rubber wheel-type Automatic Guideway Transit(AGT) made of aluminum honeycomb sandwich composites with WR580/NF4000 glass-fabric epoxy laminate face sheets. The static tests of vehicle structure were conducted according to JIS E7l05. These static tests have been done under vertical load, compressive load and 3-point support load. The structural integrity of AGT vehicle structure was evaluated by displacement, stress obtained from LVDT and strain gauges, and natural frequency. And finite element analysis using Ansys v11.0 was done to compare with the results of static test. The result showed that the results of structural integrity for static test were in an good agreement with these of finite element analysis.

  • PDF

Structural Safety Evaluation of An Autoclave Cured Train Carbody with Length of 23m (오토클레이브 성형된 길이 23m 복합재 철도차량 차체의 구조적 특성평가)

  • Kim, Jung-Seok;Lee, Sang-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.11 s.242
    • /
    • pp.1551-1559
    • /
    • 2005
  • This paper explains manufacturing process and experimental studies on a composite carbody of Korean tilting train. The composite carbody with length of 23m was manufactured as a sandwich structure composed of a 40mm-thick aluminium honeycomb core and 5mm-thick woven fabric carbon/epoxy face. In order to evaluate structural behavior and safety of the composite carbody, the static load tests such as vertical load, end compressive load, torsional load and 3-point support load tests have been conducted. These tests were performed under Japanese Industrial Standard (JIS) 17105 standard. From the tests, maximum deflection was 12.3mm and equivalent bending stiffness of the carbody was 0.81$\times$10$^{14}$ kgf$\cdot$mm$^{2}$ Maximum stress of the composite body was lower than 12.2$\%$ of strength of the carbon/epoxy. Therefore, the composite body satisfied the Japanese Industrial Standard.

EFFECT OF CANTILEVER LENGTH AND LOAD ON STRESS DISTRIBUTION OF FIXED IMPLANT-SUPPORTED PROSTHESES (캔틸레버의 길이와 하중이 하악 임플랜트지지 고정성 보철물의 응력 분산에 미치는 영향)

  • Tae, Yen-Sup;Lee, Wha-Young;Cho, Hye-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.36 no.4
    • /
    • pp.615-643
    • /
    • 1998
  • The purpose of this study was to evaluate the effect of cantilever length, load, and implant number on the stress distribution of implant supported fixed prosthesis. In the replica of an edentulous human mandible, four or five implants were placed and spaced evenly between the mental foramina and symmetrical gold alloy cast superstructures with cantilever were fabricated. Strain gauges were placed in buccal and lingual side of implants. 9, 15, 21kg of loads at varying cantilever lengths were applied to the occlusal surface of fixed prostheses. The strains were recorded from each gauge and principal stresses were calculated The results were as follows : 1. Increasing the length of the cantilever increased the stresses on the bone supporting implants. and the ratio of increase became high as increasing the load. 2. In the model with four implants, the highest compressive stress was measured on lingual side of the first implants nearest loading point and the highest tensile stress was measured on buccal side of the second implants. 3. In the model with five implants, the highest compressive stress was measured on lingual side of the first implants nearest loading point. And the highest tensile stress was measured on buccal side of the second implants, and lingual side of the third implants. 4. There was no significant change of the magnitude of stress on the most distal imp]ant of non cantilevered side as increasing the cantilever length or load. 5. In general, the superstructure supported by five implants reduced the stress and was less affected by cantilever length compared to the support provided by four implants.

  • PDF

Study on Stress Variation in Slab and Support of Shearwall-Type RC Apartment during Construction (전단벽식 아파트에서 시공중 슬래브 및 동바리의 응력변화에 대한 연구)

  • Kim Young-Chan
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.4 s.68
    • /
    • pp.161-165
    • /
    • 2004
  • Safety and efficiency in the construction of RC structures mainly depends on optimal operation of shore-slat systems. The disasters in RC construction are mainly due to excessive load applied to falsework and premature removal of supports. Development of sufficient compressive strength of early-age connote is essential for the safety of structures during construction. Most of studies on shore-slab interaction have focused on flat slab structures. In this study, load distributions in floor slabs and supports during the construction of shear wall-type RC apartment building structures is investigated using finite element analysis.

Experimental Study on Bond Behavior of 1/12.5 Scale Model of the Steel Tubular Joint Connection Subjected to Compressive Loads (압축하중을 받는 1/12.5 축소모형 강관 연결부의 부착전단 거동에 대한 실험적 연구)

  • Hongseob Oh
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.3
    • /
    • pp.19-26
    • /
    • 2024
  • In this study, the compressive behavior of a 1/12.5 scale model of a wind tower support structure connection was experimentally analyzed. A high-performance cementitious grout with a compressive strength of 140 MPa was used to fill the connection, and experiments were conducted with shear key spacing, the shape, and connection length as variables. When the number of shear keys in the connection is the same, the smaller the spacing of the shear keys than the length of the connection, the higher the shear strength, and for the same spacing and connection length, the higher the height of the shear keys, the higher the strength. In addition, it was found that the strength showed a linear behaviour until the connection slip reached 1.0 mm, and it reached the maximum strength at 7.0 mm connection slip showing a non-linear behaviour as the load increased. It was found that the failure mode changed from interfacial shear failure to grout failure as the strength increased according to the shape and spacing of the shear key, and brittle failure did not occur due to steel fibers.

Buckling Experiment of Eccentric Seismic Bracing Devices for Branch Lines (내진설계용 편심방식 가지배관 고정장치의 좌굴 실험)

  • Changsoo, Oh;Jihoon, Kim;Hasung Kong
    • Journal of the Korea Safety Management & Science
    • /
    • v.26 no.1
    • /
    • pp.9-14
    • /
    • 2024
  • Restraints of Branch Lines are used as earthquake-resistant support devices for fire-fighting pipes along with sway brace devices. The central types are aligned and fixed in a straight line with center of the pipe, but the eccentric types are fixed to on side of the pipe, so a bending moment occurs. In this study, three specimens each of central type and eccentric type were installed at an angle of 45° from the vertical and a monotonic compression load of 1340N was applied. All central type samples satisfied 17.8mm of the allowable displacement, but all eccentric type samples failed to meet the target load and buckled. Therefore, when considering the performance of eccentric type restraints, both compressive load and bending moment must be considered. Even through material mechanics calculations, the yield stress of eccentric type - 3/8 inch all threaded steel bolt - exceeds 320Mpa of the allowable stress. A experiment standards need to be established for eccentric type restraints.

A Study on Field Testing Methods for the Shotcrete Quality Control of Large Underground Spaces (지하 대공간 숏크리트 품질관리를 위한 현장강도 시험기술에 관한 연구)

  • Chang, Seok-Bue;Lee, Soung-Woo;Hong, Eui-Joon;Moon, Sang-Jo
    • Tunnel and Underground Space
    • /
    • v.16 no.5 s.64
    • /
    • pp.405-412
    • /
    • 2006
  • It is well known that shotcrete is the most important support member for the construction of large underground spaces. Generally, the strength of the field shotcrete is heavily dependent on the field mixing and spraying conditions so that it is different from the strength of the shotcrete mixed in laboratories. As a support member, the early strength of shotcrete unlike concrete is very important to the initial stabilization of the underground spaces. Therefore, the field methods to efficiently test the early strength of shotcrete have been highly required. This paper aimed to verify the pneumatic pin penetration test and the point load test for measuring the early strength of the field shotcrete. As a result of the experiments through a series of uniaxial compression, pin penetration, and point load tests for the range of the early shotcrete strength, two equations to estimate reliably the uniaxial compressive strength by the pin penetration and the point load tests were acquired.

A Study on the Strength Change of Used Pipe Support(II) (재사용 파이프서포트의 내력변화 연구(II))

  • Paik, Shin-Won;Ro, Min-Lae
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.3 s.71
    • /
    • pp.120-125
    • /
    • 2005
  • Formwork is a temporary structure that supports its weight and that of freshly placed concrete as well as construction live loads. Among the accidents and failures that occur during concrete construction, many are formwork failures which usually happen at the time concrete is being placed. In constructions site, pipe supports are usually used as shores which are consisted of the slab formwork. The strength of a pipe support is decreasing as it is frequently being used at the construction site. The objective of this study is to find out the strength change of used pipe support and unused pipe supports according to aging. In this study, 2857 pipe supports were prepared. Among these pipe supports, 2337 pipe supports were lent to the construction companies fire of charge. 520 pipe supports were kept on the outside. Compressive strength was measured by knife edge test and plate test at each 3 month. Test results show that the strength of unused pipe supports as well as used pipe supports was decreasing according to age, use frequency and load carrier, and the strength of used pipe supports was lower than the strength of unused pipe supports at the same age. So, the strength of used pipe supports from 191 days to present day was not satisfied the specification of KS F 8001. According to these results, it shows that attention has to be paid to formwork design using used pipe supports. Therefore, the present study results will be able to provide a firm base to prevent formwork collapses.

Field Testing Methods on Early Shotcrete Strength for Tunnel Quality Control (터널의 품질관리를 위한 숏크리트 초기강도의 현장강도 시험기술)

  • Hong, Eui-Joon;Chang, Seok-Bue;Lee, Sung-Woo;Kim, Ki-Lim;Moon, Sang-Jo
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.468-476
    • /
    • 2007
  • Generally, the strength of the field shotcrete is heavily dependent on the field mixing and spraying conditions so that it is different from the strength of the shotcrete mixed in laboratories. As a support member, the early strength of shotcrete unlike concrete as structural material is very important to the initial stabilization of the excavation face in tunnels. Therefore, the field methods to efficiently test the early strength of shotcrete have been highly required. This paper aimed to verify the pneumatic pin penetration test and the point load test for measuring the early strength of the field shotcrete. Through a series of uniaxial compression, pin penetration, and point load tests for the range of the early shotcrete strength, two equations to estimate reliably the uniaxial compressive strength by the pin penetration and the point load tests were derived. Field tests in working tunnel were carried out in order to estimate the economic efficiency. As a result, pin penetration method was proved to be the most effective method for testing the early strength of the field shotcrete.

  • PDF